932 resultados para Soil fertility evaluation
Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Sequestration
Resumo:
Large-scale soil application of biochar may enhance soil fertility, increasing crop production for the growing human population, while also sequestering atmospheric carbon. But reaching these beneficial outcomes requires an understanding of the relationships among biochar's structure, stability, and contribution to soil fertility. Using quantitative C-13 nuclear magnetic resonance (NMR) spectroscopy, we show that Terra Preta soils (fertile anthropogenic dark earths in Amazonia that were enriched with char >800 years ago) consist predominantly of char residues composed of similar to 6 fused aromatic rings substituted by COO- groups that significantly increase the soils' cation-exchange capacity and thus the retention of plant nutrients. We also show that highly productive, grassland-derived soils in the U.S, (Mollisols) contain char (generated by presettlement fires) that is structurally comparable to char in the Terra Preta soils and much more abundant than previously thought (similar to 40-50% of organic C). Our findings indicate that these oxidized char residues represent a particularly stable, abundant, and fertility-enhancing form of soil organic matter.
Resumo:
The current high competition on Citrus industry demands from growers new management technologies for superior efficiency and sustainability. In this context, precision agriculture (PA) has developed techniques based on yield mapping and management systems that recognize field spatial variability, which contribute to increase profitability of commercial crops. Because spatial variability is often not perceived the orange orchards are still managed as uniform and adoption of PA technology on citrus farms is low. Thus, the objective of the present study was to characterize the spatial variability of three factors: fruit yield, soil fertility and occurrence of plant gaps caused by either citrus blight or huanglongbing (HLB) in a commercial Valencia orchard in Brotas, São Paulo State, Brazil. Data from volume, geographic coordinates and representative area of the bags used on harvest were recorded to generate yield points that were then interpolated to produce the yield map. Soil chemical characteristics were studied by analyzing samples collected along planting rows and inter-rows in 24 points distributed in the field. A map of density of tree gaps was produced by georeferencing individual gaps and later by counting the number of gaps within 500 m² cells. Data were submitted to statistical and geostatistical analyses. A t test was used to compare means of soil chemical characteristics between sampling regions. High variation on yield and density of tree gaps was observed from the maps. It was also demonstrated overlapping regions of high density of plant absence and low fruit yield. Soil fertility varied depending on the sampling region in the orchard. The spatial variability found on yield, soil fertility and on disease occurrence demonstrated the importance to adopt site specific nutrient management and disease control as tools to guarantee efficiency of fruit production.
Resumo:
The correlation of soil fertility x seed physiological potential is very important in the area of seed technology but results published with that theme are contradictory. For this reason, this study to evaluate the correlations between soil chemical properties and physiological potential of soybean seeds. On georeferenced points, both soil and seeds were sampled for analysis of soil fertility and seed physiological potential. Data were assessed by the following analyses: descriptive statistics; Pearson's linear correlation; and geostatistics. The adjusted parameters of the semivariograms were used to produce maps of spatial distribution for each variable. Organic matter content, Mn and Cu showed significant effects on seed germination. Most variables studied presented moderate to high spatial dependence. Germination and accelerated aging of seeds, and P, Ca, Mg, Mn, Cu and Zn showed a better fit to spherical semivariogram: organic matter, pH and K had a better fit to Gaussian model; and V% and Fe showed a better fit to the linear model. The values for range of spatial dependence varied from 89.9 m for P until 651.4 m for Fe. These values should be considered when new samples are collected for assessing soil fertility in this production area.
Resumo:
This study investigates the changes in soil fertility due to the different aggregate breakdown mechanisms and it analyses their relationships in different soil-plant systems, using physical aggregates behavior and organic matter (OM) changes as indicators. Three case studies were investigated: i) an organic agricultural soil, where a combined method, aimed to couple aggregate stability to nutrients loss, were tested; ii) a soil biosequence, where OM chemical characterisation and fractionation of aggregates on the basis of their physical behaviour were coupled and iii) a soils sequence in different phytoclimatic conditions, where isotopic C signature of separated aggregates was analysed. In agricultural soils the proposed combined method allows to identify that the severity of aggregate breakdown affected the quantity of nutrients lost more than nutrients availability, and that P, K and Mg were the most susceptible elements to water abrasion, while C and N were mainly susceptible to wetting. In the studied Chestnut-Douglas fir biosequence, OM chemical properties affected the relative importance of OM direct and indirect mechanisms (i.e., organic and organic-metallic cements, respectively) involved in aggregate stability and nutrient losses: under Douglas fir, high presence of carboxylate groups enhanced OM-metal interactions and stabilised aggregates; whereas under Chestnut, OM directly acted and fresh, more C-rich OM was preserved. OM direct mechanism seemed to be more efficient in C preservation in aggregates. The 13C natural abundance approach showed that, according to phytoclimatic conditions, stable macroaggregates can form both around partially decomposed OM and by organic-mineral interactions. In topsoils, aggregate resistance enhanced 13C-rich OM preservation, but in subsoils C preservation was due to other mechanisms, likely OM-mineral interactions. The proposed combined approach seems to be useful in the understanding of C and nutrients fate relates to water stresses, and in future research it could provide new insights into the complexity of soil biophysical processes.
Resumo:
Efficient planning of soil conservation measures requires, first, to understand the impact of soil erosion on soil fertility with regard to local land cover classes; and second, to identify hot spots of soil erosion and bright spots of soil conservation in a spatially explicit manner. Soil organic carbon (SOC) is an important indicator of soil fertility. The aim of this study was to conduct a spatial assessment of erosion and its impact on SOC for specific land cover classes. Input data consisted of extensive ground truth, a digital elevation model and Landsat 7 imagery from two different seasons. Soil spectral reflectance readings were taken from soil samples in the laboratory and calibrated with results of SOC chemical analysis using regression tree modelling. The resulting model statistics for soil degradation assessments are promising (R2=0.71, RMSEV=0.32). Since the area includes rugged terrain and small agricultural plots, the decision tree models allowed mapping of land cover classes, soil erosion incidence and SOC content classes at an acceptable level of accuracy for preliminary studies. The various datasets were linked in the hot-bright spot matrix, which was developed to combine soil erosion incidence information and SOC content levels (for uniform land cover classes) in a scatter plot. The quarters of the plot show different stages of degradation, from well conserved land to hot spots of soil degradation. The approach helps to gain a better understanding of the impact of soil erosion on soil fertility and to identify hot and bright spots in a spatially explicit manner. The results show distinctly lower SOC content levels on large parts of the test areas, where annual crop cultivation was dominant in the 1990s and where cultivation has now been abandoned. On the other hand, there are strong indications that afforestations and fruit orchards established in the 1980s have been successful in conserving soil resources.
Resumo:
Organic management is one of the most popular strategies to reduce negative environmental impacts of intensive agriculture. However, little is known about benefits for biodiversity and potential worsening of yield under organic grasslands management across different grassland types, i.e. meadow, pasture and mown pasture. Therefore, we studied the diversity of vascular plants and foliage-living arthropods (Coleoptera, Araneae, Heteroptera, Auchenorrhyncha), yield, fodder quality, soil phosphorus concentrations and land-use intensity of organic and conventional grasslands across three study regions in Germany. Furthermore, all variables were related to the time since conversion to organic management in order to assess temporal developments reaching up to 18 years. Arthropod diversity was significantly higher under organic than conventional management, although this was not the case for Araneae, Heteroptera and Auchenorrhyncha when analyzed separately. On the contrary, arthropod abundance, vascular plant diversity and also yield and fodder quality did not considerably differ between organic and conventional grasslands. Analyses did not reveal differences in the effect of organic management among grassland types. None of the recorded abiotic and biotic parameters showed a significant trend with time since transition to organic management, except soil organic phosphorus concentrations which decreased with time. This implies that permanent grasslands respond slower and probably weaker to organic management than crop fields do. However, as land-use intensity and inorganic soil phosphorus concentrations were significantly lower in organic grasslands, overcoming seed and dispersal limitation by re-introducing plant species might be needed to exploit the full ecological potential of organic grassland management. We conclude that although organic management did not automatically increase the diversity of all studied taxa, it is a reasonable and useful way to support agro-biodiversity.
Resumo:
Bibliography: p. 20-21.
Resumo:
Bibliography: p. 28.
Resumo:
Caption title.
Resumo:
Low and high water periods create contrasting challenges for trees inhabiting periodically flooded wetlands. Low to moderate flood durations and frequencies may bring nutrient subsidies, while greater hydroperiods can be energetically stressful because of oxygen deficiency. We tested the hypothesis that hydroperiod affects the growth of mangrove seedlings and saplings in a greenhouse experiment by varying flood duration while keeping salinity and soil fertility constant. We measured the growth of mangrove trees along a hydroperiod gradient over a two-year period by tracking fine-scale diameter increment. Greenhouse growth studies indicated that under a full range of annual flood durations (0–8760 h/year), hydroperiod alone exerted a significant influence on growth for one species, Laguncularia racemosa, when flooding was imposed for two growing seasons. Field evaluations, on the other hand, indicated that increased flood duration may provide nutrient subsidies for tree growth. Diameter growth was related curvilinearly to site hydroperiod, including flood duration and frequency, as well as to salinity and soil fertility. An analysis of soil physico-chemical parameters suggests that phosphorus fertility, which was also linked directly to hydroperiod, is likely to influence growth on south Florida mangrove sites. The physical removal of phosphorus by greater flood frequencies from upland sources and/or addition of phosphorus from tidal flooding balanced against increased soil aeration and reduced water deficits may be an extremely important growth determinant for south Florida mangroves.
Resumo:
The agro-climatic conditions in western Kenya present the region as a food surplus area yet people are still reliant on food imports, with the region registering high poverty levels. Depletion of soil fertility and the resulting decline in agricultural productivity in Mbale division has led to many attempts to develop and popularize Integrated Soil Fertility Management (ISFM) technologies that could restore soil fertility. These technologies bridge the gap between high external inputs and extreme forms of traditional low external input agriculture. Some of the ISFM components used by farmers are organic and inorganic inputs and improved seeds. However, the adoption of these technologies is low. The study aimed to examine the factors that influence the adoption of ISFM technologies by smallholder farmers in Mbale division, Kenya. The study was conducted in 9 sub-locations in Mbale division. Purposive sampling was used in selecting the 80 farmers to get the data based on a farm-household survey. Self-administered questionnaires were used to collect data on the determinants of the adoption of ISFM technologies from the sampled farmers in the study area. The study sought to answer the research question: What factors influence the uptake of ISFM technologies by farmers in Mbale division? The hypothesis tested was that the adoption of ISFM technologies is not influenced by age, education, extension services, labour, off-farm income and farm size. Data was analyzed using descriptive statistics. Cross tabulation was used for examining the relationship between categorical (nominal or ordinal) variables, and the bivariate correlations procedure was used to compute the pair wise associations between scale or ordinal variables. Probit regression was used to predict the socio-economic factors influencing the adoption of ISFM technologies among smallholder farmers. Results of the study indicated that education of household head, membership in social groups, age of the household head, off-farm income and farm size were the variables that significantly influenced the adoption of ISFM technologies. The findings show that there is need for a more pro-poor focused approach to achieve sustainable soil fertility management among smallholder farmers. The findings will help farmers, extension officers, researchers and donors in identifying region-specific entry points that can help in developing innovative ISFM technologies.
Resumo:
The effect of charcoal feeding on manure quality and its subsequent application to enhance soil productivity has received little attention. The objectives of the present study therefore were to investigate the effects of (i) charcoal feeding on manure composition, and (ii) charcoal-enriched manure application on soil fertility parameters and growth of millet (Pennisetum glaucum L.). To this end, two experiments were conducted: First, a goat feeding trial where goats were fed increasing levels of activated charcoal (AC; 0, 3, 5, 7, and 9% of total ration); second, a greenhouse pot experiment using the manure from the feeding trial as an amendment for a sandy soil from northern Oman. We measured manure C, N, P, and K concentrations, soil fertility parameters and microbial biomass indices, as well as plant yield and nutrient concentrations. Manure C concentration increased significantly (P<0.001) from 45.2% (0% AC) to 60.2% (9% AC) with increasing dietary AC, whereas manure N, P, and K concentrations decreased (P<0.001) from 0% AC (N: 2.5%, P: 1.5%, K: 0.8%) to 9% AC (N: 1.7%, P: 0.8%, K: 0.4%). Soil organic carbon, pH, and microbial biomass N showed a response to AC-enriched manure. Yield of millet decreased slightly with AC enrichment, whereas K uptake was improved with increasing AC. We conclude that AC effects on manure quality and soil productivity depend on dosage of manure and AC, properties of AC, trial duration, and soil type.
Resumo:
The rise in population growth, as well as nutrient mining, has contributed to low agricultural productivity in Sub-Saharan Africa (SSA). A plethora of technologies to boost agricultural production have been developed but the dissemination of these agricultural innovations and subsequent uptake by smallholder farmers has remained a challenge. Scientists and philanthropists have adopted the Integrated Soil Fertility Management (ISFM) paradigm as a means to promote sustainable intensification of African farming systems. This comparative study aimed: 1) To assess the efficacy of Agricultural Knowledge and Innovation Systems (AKIS) in East (Kenya) and West (Ghana) Africa in the communication and dissemination of ISFM (Study I); 2) To investigate how specifically soil quality, and more broadly socio-economic status and institutional factors, influence farmer adoption of ISFM (Study II); and 3) To assess the effect of ISFM on maize yield and total household income of smallholder farmers (Study III). To address these aims, a mixed methodology approach was employed for study I. AKIS actors were subjected to social network analysis methods and in-depth interviews. Structured questionnaires were administered to 285 farming households in Tamale and 300 households in Kakamega selected using a stratified random sampling approach. There was a positive relationship between complete ISFM awareness among farmers and weak knowledge ties to both formal and informal actors at both research locations. The Kakamega AKIS revealed a relationship between complete ISFM awareness among farmers and them having strong knowledge ties to formal actors implying that further integration of formal actors with farmers’ local knowledge is crucial for the agricultural development progress. The structured questionnaire was also utilized to answer the query pertaining to study II. Soil samples (0-20 cm depth) were drawn from 322 (Tamale, Ghana) and 459 (Kakamega, Kenya) maize plots and analysed non-destructively for various soil fertility indicators. Ordinal regression modeling was applied to assess the cumulative adoption of ISFM. According to model estimates, soil carbon seemed to preclude farmers from intensifying input use in Tamale, whereas in Kakamega it spurred complete adoption. This varied response by farmers to soil quality conditions is multifaceted. From the Tamale perspective, it is consistent with farmers’ tendency to judiciously allocate scarce resources. Viewed from the Kakamega perspective, it points to a need for farmers here to intensify agricultural production in order to foster food security. In Kakamega, farmers with more acidic soils were more likely to adopt ISFM. Other household and farm-level factors necessary for ISFM adoption included off-farm income, livestock ownership, farmer associations, and market inter-linkages. Finally, in study III a counterfactual model was used to calculate the difference in outcomes (yield and household income) of the treatment (ISFM adoption) in order to estimate causal effects of ISFM adoption. Adoption of ISFM contributed to a yield increase of 16% in both Tamale and Kakamega. The innovation affected total household income only in Tamale, where ISFM adopters had an income gain of 20%. This may be attributable to the different policy contexts under which the two sets of farmers operate. The main recommendations underscored the need to: (1) improve the functioning of AKIS, (2) enhance farmer access to hybrid maize seed and credit, (3) and conduct additional multi-locational studies as farmers operate under varying contexts.
Resumo:
Conservation Agriculture (CA) is mostly referred to in the literature as having three principles at the core of its identity: minimum soil disturbance, permanent organic soil cover and crop diversity. This farming package has been described as suitable to improve yields and livelihoods of smallholders in semi-arid regions of Kenya, which since the colonial period have been heavily subjected to tillage. Our study is based on a qualitative approach that followed local meanings and understandings of soil fertility, rainfall and CA in Ethi and Umande located in the semi-arid region of Laikipia, Kenya. Farm visits, 53 semistructured interviews, informal talks were carried out from April to June 2015. Ethi and Umande locations were part of a resettlement programme after the independence of Kenya that joined together people coming from different farming contexts. Since the 1970–80s, state and NGOs have been promoting several approaches to control erosion and boost soil fertility. In this context, CA has also been promoted preferentially since 2007. Interviewees were well acquainted with soil erosion and the methods to control it. Today, rainfall amount and distribution are identified as major constraints to crop performance. Soil fertility is understood as being under control since farmers use several methods to boost it (inorganic fertilisers, manure, terraces, agroforestry, vegetation barriers). CA is recognised to deliver better yields but it is not able to perform well under severe drought and does not provide yields as high as ‘promised’ in promotion campaigns. Moreover, CA is mainly understood as “cultivating with chemicals”, “kulima na dawa”, in kiswahili. A dominant view is that CA is about minimum tillage and use of pre-emergence herbicides. It is relevant to reflect about what kind of CA is being promoted and if elements like soil cover and crop rotation are given due attention. CA based on these two ideas, minimum tillage and use of herbicides, is hard to stand as a programme to be promoted and up-scaled. Therefore CA appears not to be recognised as a convincing approach to improve the livelihoods in Laikipia.