990 resultados para Soil cover rate


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Because of the climate changes occurring across the planet, especially global warming, the different forms of agricultural soil use have attracted researchers´ attention. Changes in soil management may influence soil respiration and, consequently, C sequestration. The objectives of this study were to evaluate the long-term influence of liming on soil respiration and correlate it with soil chemical properties after two years of liming in a no-tillage system. A randomized complete block design was used with six replications. The experimental treatments consisted of four lime rates and a control treatment without lime. Two years after liming, soil CO2 emission was measured and the soil sampled (layers 0-5, 5-10, 10-20, and 20-30 cm). The P, Ca2+ e Mg2+ soil contents and pH and base saturation were determined. CO2 emission from soil limed at the recommended rate was 24.1 % higher, and at twice the recommended rate, 47.4 % higher than from unlimed soil. Liming improved the chemical properties, and the linear increase in soil respiration rate correlated positively with the P, Ca2+ and Mg2+ soil contents, pH and base saturation, and negatively with H + Al and Al3+ contents. The correlation coefficient between soil respiration rate and chemical properties was highest in the 10-20 cm layer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a no-tillage system, cover crops must be used that combine shoot dry matter production and nutrient recycling. The aim of this study was to evaluate shoot dry matter production, decomposition rate and macronutrient and silicon release from pigeonpea and pearl millet in monoculture and intercropping systems. A randomized block design was used with a 3 x 6 factorial arrangement, with four replications. The first factor consisted of three cover crops (pigeonpea, pearl millet and intercropping of these cover crops) and the second consisted of six sampling times [0, 18, 32, 46, 74 and 91 days after desiccation (DAD)]. Pearl millet produced greater amounts of shoot dry matter and content of N, P, K, Ca, Mg, S, C and Si and had a higher decomposition rate and macronutrient and Si release than the other cover crops. The rates of decomposition and daily nutrient release from shoot dry matter were highest in the first period of evaluation (0-18 DAD). Over time, the C/N, C/P and C/S ratios increased, while C/Si and the decomposition rate decreased. Potassium was the nutrient most quickly released to the soil, especially from pearl millet residue. Silicon had the lowest release rate, with 62, 82 and 74 % of the total content in the shoot dry matter remaining in the last evaluation of pearl millet, pigeonpea and in the intercrop system, respectively. The shoot dry matter from the intercrop system had a different decomposition rate than that from the pearl millet monoculture and pigeonpea. Plants with greater shoot dry matter production and lower C/Si ratio are more effective in a no-tillage system for providing a more complete and persistent soil cover.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sustainable use of soil, maintaining or improving its quality, is one of the goals of diversification in farmlands. From this point of view, bioindicators associated with C, N and P cycling can be used in assessments of land-use effects on soil quality. The aim of this study was to investigate chemical, microbiological and biochemical properties of soil associated with C, N and P under different land uses in a farm property with diversified activity in northern Parana, Brazil. Seven areas under different land uses were assessed: fragment of native Atlantic Forest; growing of peach-palm (Bactrys gasipaes); sugarcane ratoon (Saccharum officinarum) recently harvested, under renewal; growing of coffee (Coffea arabica) intercropped with tree species; recent reforestation (1 year) with native tree species, previously under annual crops; annual crops under no-tillage, rye (Cecale cereale); secondary forest, regenerated after abandonment (for 20 years) of an avocado (Persea americana) orchard. The soil under coffee, recent reforestation and secondary forest showed higher concentrations of organic carbon, but microbial biomass and enzyme activities were higher in soils under native forest and secondary forest, which also showed the lowest metabolic coefficient, followed by the peach-palm area. The lowest content of water-dispersible clay was found in the soil under native forest, differing from soils under sugarcane and secondary forest. Soil cover and soil use affected total organic C contents and soil enzyme and microbial activities, such that more intensive agricultural uses had deeper impacts on the indicators assessed. Calculation of the mean soil quality index showed that the secondary forest was closest to the fragment of native forest, followed by the peach-palm area, coffee-growing area, annual crop area, the area of recent reforestation and the sugarcane ratoon area.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The action of rain and surface runoff together are the active agents of water erosion, and further influences are the soil type, terrain, soil cover, soil management, and conservation practices. Soil water erosion is low in the no-tillage management system, being influenced by the amount and form of lime and fertilizer application to the soil, among other factors. The aim was to evaluate the effect of the form of liming, the quantity and management of fertilizer application on the soil and water losses by erosion under natural rainfall. The study was carried out between 2003 and 2013 on a Humic Dystrupept soil, with the following treatments: T1 - cultivation with liming and corrective fertilizer incorporated into the soil in the first year, and with 100 % annual maintenance fertilization of P and K; T2 - surface liming and corrective fertilization distributed over five years, and with 75 % annual maintenance fertilization of P and K; T3 - surface liming and corrective fertilization distributed over three years, and with 50 % annual maintenance fertilization of P and K; T4 - surface liming and corrective fertilization distributed over two years, and with 25 % annual maintenance fertilization of P and K; T5 - fallow soil, without liming or fertilization. In the rotation the crops black oat (Avena strigosa ), soybean (Glycine max ), common vetch (Vicia sativa ), maize (Zea mays ), fodder radish (Raphanus sativus ), and black beans (Phaseolus vulgaris ). The split application of lime and mineral fertilizer to the soil surface in a no-tillage system over three and five years, results in better control of soil losses than when split in two years. The increase in the amount of fertilizer applied to the soil surface under no-tillage cultivation increases phytomass production and reduces soil loss by water erosion. Water losses in treatments under no-tillage cultivation were low in all crop cycles, with a similar behavior as soil losses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols). In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT), conventional tillage (CT), and minimum tillage (MT) with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb) and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.). Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT Cassava (Manihot esculenta Crantz) is a highly mycotrophic crop, and prior soil cover may affect the density of arbuscular mycorrhizal fungi (AMFs), as well as the composition of the AMFs community in the soil. The aim of this study was to evaluate the occurrence and the structure of AMFs communities in cassava grown after different cover crops, and the effect of the cover crop on mineral nutrition and cassava yield under an organic farming system. The occurrence and structure of the AMFs community was evaluated through polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). A randomized block experimental design was used with four replications. Six different cover crop management systems before cassava were evaluated: black oats, vetch, oilseed radish, intercropped oats + vetch, intercropped oats + vetch + oilseed radish, plus a control (fallow) treatment mowed every 15 days. Oats as a single crop or oats intercropped with vetch or with oilseed radish increased AMFs inoculum potential in soil with a low number of propagules, thus benefiting mycorrhizal colonization of cassava root. The treatments did not affect the structure of AMFs communities in the soil since the AMFs communities were similar in cassava roots in succession to different cover crops. AMFs colonization was high despite high P availability in the soil. The cassava crop yield was above the regional average, and P levels in the leaves were adequate, regardless of which cover crop treatments were used. One cover crop cycle prior to the cassava crop was not enough to observe a significant response in variables, P in plant tissue, crop yield, and occurrence and structure of AMFs communities in the soil. In the cassava roots in succession, the plant developmental stage affected the groupings of the structure of the AMF community.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is generally accepted that high density polyethylene pipe (HDPE) performs well under live loads with shallow cover, provided the backfill is well compacted. Although industry standards require carefully compacted backfill, poor inspection and/or faulty construction may result in soils that provide inadequate restraint at the springlines of the pipes thereby causing failure. The objectives of this study were: 1) to experimentally define a lower limit of compaction under which the pipes perform satisfactorily, 2) to quantify the increase in soil support as compaction effort increases, 3) to evaluate pipe response for loads applied near the ends of the buried pipes, 4) to determine minimum depths of cover for a variety of pipes and soil conditions by analytically expanding the experimental results through the use of the finite element program CANDE. The test procedures used here are conservative especially for low-density fills loaded to high contact stresses. The failures observed in these tests were the combined effect of soil bearing capacity at the soil surface and localized wall bending of the pipes. Under a pavement system, the pipes' performance would be expected to be considerably better. With those caveats, the following conclusions are drawn from this study. Glacial till compacted to 50% and 80% provides insufficient support; pipe failureoccurs at surface contact stresses lower than those induced by highway trucks. On the other hand, sand backfill compacted to more than 110 pcf (17.3 kN/m3) is satisfactory. The failure mode for all pipes with all backfills is localized wall bending. At moderate tire pressures, i.e. contact stresses, deflections are reduced significantly when backfill density is increased from about 50 pcf (7.9 kN/m^3) to 90 pcf (14.1 kN/m^3). Above that unit weight, little improvement in the soil-pipe system is observed. Although pipe stiffness may vary as much as 16%, analyses show that backfill density is more important than pipe stiffness in controlling both deflections at low pipe stresses and at the ultimate capacity of the soil-pipe system. The rate of increase in ultimate strength of the system increases nearly linearly with increasing backfill density. When loads equivalent to moderate tire pressures are applied near the ends of the pipes, pipe deflections are slighly higher than when loaded at the center. Except for low density glacial till, the deflections near the ends are not excessive and the pipes perform satisfactorily. For contact stresses near the upper limit of truck tire pressures and when loaded near the end, pipes fail with localized wall bending. For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper limit of highway truck tire pressures, deflections are negligible. All pipe specimens tested at ambient laboratory room temperatures satisfied AASHTO minimum pipe stiffness requirements at 5% deflection. However, nearly all specimens tested at elevated pipe surface temperatures, approximately 122°F (50°C), failed to meet these requirements. Some HDPE pipe installations may not meet AASHTO minimum pipe stiffness requirements when installed in the summer months (i.e. if pipe surface temperatures are allowed to attain temperatures similar to those tested here). Heating of any portion of the pipe circumference reduced the load carrying capacity of specimens. The minimum soil cover depths, determined from the CANOE analysis, are controlled by the 5% deflection criterion. The minimum soil cover height is 12 in. (305 mm). Pipes with the poor silt and clay backfills with less than 85% compaction require a minimum soil cover height of 24 in. (610 mm). For the sand at 80% compaction, the A36 HDPE pipe with the lowest moment of inertia requires a minimum of 24 in. (610 mm) soil cover. The C48 HDPE pipe with the largest moment of inertia and all other pipes require a 12 in. (305 mm) minimum soil cover.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effects of lignin, hemicellulose, and cellulose concentrations in the decomposition process of cover plant residues with potential use in no-tillage with corn, for crop-livestock integrated system, in the Cerrado region. The experiment was carried out at Embrapa Cerrados, in Planaltina, DF, Brazil in a split plot experimental design. The plots were represented by the plant species and the subplots by harvesting times, with three replicates. The cover plants Urochloa ruziziensis, Canavalia brasiliensis, Cajanus cajan, Pennisetum glaucum, Mucuna aterrima, Raphanus sativus, Sorghum bicolor were evaluated together with spontaneous plants in the fallow. Cover plants with lower lignin concentrations and, consequently, higher residue decomposition such as C. brasiliensis and U. ruziziensis promoted higher corn yield. High concentrations of lignin inhibit plant residue decomposition and this is favorable for the soil cover. Lower concentrations of lignin result in accelerated plant decomposition, more efficient nutrient cycling, and higher corn yield.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to evaluate the seasonal variation of soil cover and rainfall erosivity, and their influences on the revised universal soil loss equation (Rusle), in order to estimate watershed soil losses in a temporal scale. Twenty-two TM Landsat 5 images from 1986 to 2009 were used to estimate soil use and management factor (C factor). A corresponding rainfall erosivity factor (R factor) was considered for each image, and the other factors were obtained using the standard Rusle method. Estimated soil losses were grouped into classes and ranged from 0.13 Mg ha-1 on May 24, 2009 (dry season) to 62.0 Mg ha-1 on March 11, 2007 (rainy season). In these dates, maximum losses in the watershed were 2.2 and 781.5 Mg ha-1 , respectively. Mean annual soil loss in the watershed was 109.5 Mg ha-1 , but the central area, with a loss of nearly 300.0 Mg ha-1 , was characterized as a site of high water-erosion risk. The use of C factor obtained from remote sensing data, associated to corresponding R factor, was fundamental to evaluate the soil erosion estimated by the Rusle in different seasons, unlike of other studies which keep these factors constant throughout time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract: The objective of this work was to evaluate soil water dynamics in areas cultivated with forage cactus clones and to determine how environmental conditions and crop growth affect evapotranspiration. The study was conducted in the municipality of Serra Talhada, in the state of Pernambuco, Brazil. Crop growth was monitored through changes in the cladode area index (CAI) and through the soil cover fraction, calculated at the end of the cycle. Real evapotranspiration (ET) of the three evaluated clones was obtained as the residual term in the soil water balance method. No difference was observed between soil water balance components, even though the evaluated clones were of different genus and had different CAI increments. Accumulated ET was of 1,173 mm during the 499 days of the experiment, resulting in daily average of 2.35 mm. The CAI increases the water consumption of the Orelha de Elefante Mexicana clone. In dry conditions, the water consumption of the Miúda clone responds more slowly to variation in soil water availability. The lower evolution of the CAI of the IPA Sertânia clone, during the rainy season, leads to a higher contribution of the evaporation component in ET. The atmospheric demand controls the ET of clones only when there is higher soil water availability; in this condition, the water consumption of the Miúda clone decreases more rapidly with the increase of atmospheric demand.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of foundation and leaf fertilization with micronutrients on fruit size and quality of pineapple cv. Vitória under the environmental conditions of the Baixo Acaraú irrigated perimeter in Northern Ceará State, Brazil, under two covers (bagana and black plastic) of the sandy soil of low fertility. The experimental design was a randomized split blocks one with four levels of soil dressing and four levels of foliar fertilization, with five replications. Micronutrient soil dressing was studied as FTE-12 at doses of 0, 60, 120 and 180 kg ha-1. The four levels of foliar fertilization were: LF0 (without fertilizer), LF 1 (15 leaf fertilization, using the amount of 1158.75 g Fe ha-1, 844.65 g Mn ha-1, 391.5 g ha-1 Zn, 322.65 g ha-1 Cu and 216 g ha-1 B), LF2 (15 leaf fertilization, using twice the quantities of level LF1) and LF3 (15 leaf fertilization, using three times the amount of level LF1). At 13 months after planting the micropropagated plantlets was carried out the floral induction treatment and five months later the fruit harvest determining the following variables: fruit weight and median diameter, soluble solids content (SS) and titratable acidity (TA). Both fruit weight and diameter increased with increasing doses of micronutrients applied to the soil and to the leaves, of plants grown both on bagana soil cover and plastic mulch. On the other hand fruit pulp quality was little affected by the treatments studied. There were a small increase of SS contents for plants grown on bagana soil cover and a small decrease of titratable acidity for those grown on plastic mulch, in both cases just in response to micronutrient foliar application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil respiration (SR) is a major component of ecosystems' carbon cycles and represents the second largest CO2 flux in the terrestrial biosphere. Soil temperature is considered to be the primary abiotic control on SR, whereas soil moisture is the secondary control factor. However, soil moisture can become the dominant control on SR in very wet or dry conditions. Determining the trigger that makes soil moisture as the primary control factor of SR will provide a deeper understanding on how SR changes under the projected future increase in droughts. Specific objectives of this study were (1) to investigate the seasonal variations and the relationship between SR and both soil temperature and moisture in a Mediterranean riparian forest along a groundwater level gradient; (2) to determine soil moisture thresholds at which SR is controlled by soil moisture rather than by temperature; (3) to compare SR responses under different tree species present in a Mediterranean riparian forest (Alnus glutinosa, Populus nigra and Fraxinus excelsior). Results showed that the heterotrophic soil respiration rate, groundwater level and 30 cm integral soil moisture (SM30) decreased significantly from the riverside moving uphill and showed a pronounced seasonality. SR rates showed significant differences between tree species, with higher SR for P. nigra and lower SR for A. glutinosa. The lower threshold of soil moisture was 20 and 17% for heterotrophic and total SR, respectively. Daily mean SR rate was positively correlated with soil temperature when soil moisture exceeded the threshold, with Q10 values ranging from 1.19 to 2.14; nevertheless, SR became decoupled from soil temperature when soil moisture dropped below these thresholds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Currently, one of the biggest challenges faced by organic no-tillage farming is weed control. Thus, the use of cropping practices that help in the control of weeds is extremely important. The objective of this study was to evaluate population density and level of weed infestation in an organic no-tillage corn cropping system under different soil covers. The experiment was conducted in a randomized block design with six repetitions and five treatments, consisting of three soil covers in an organic no-tillage system, and an organic and a conventional system, both without soil cover. The treatments with soil cover used a grass species represented by the black oat, a leguminous species represented by the white lupine, and intercropping between both species. Corn was sown with spacing of 1.0 m between rows and 0.20 m between plants, using the commercial hybrid AG 1051. Infestation in corn was evaluated at stages V5 and V10, and weed density was evaluated at stage V5. The use of black oat straw alone or intercropped with white lupine, in the organic no-tillage corn cropping system, reduced the percentage of weed infestation and absolute weed density. Management-intensive systems and systems without soil cover showed higher relative densities for species Oxalis spp., Galinsoga quadriradiata and Stachys arvensis. The species Cyperus rotundus showed the highest relative density on organic no-tillage corn cropping systems. Black oat straw in the organic no-tillage cropping system limited the productive potential of corn.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil is a very heterogeneous environment that allows the establishment of wide range of microorganisms populations, whose balance is affected by biotic and abiotic factors. This study has aimed to assess the effect of doses of mesotrione and fluazifop-p-butyl herbicides and two assessment periods on microbial activity and biomass of soil cultivated with cassava Cacau-UFV cultivar, besides the root colonization by arbuscular mycorrhizal fungi. Two trials were conducted in a protected environment where was realized post-emergence application of mesotrione in the doses of 72, 108, 144 and 216 g ha-1 and fluazifop-p-butyl in the doses of 100, 150, 200 and 300 g ha-1, besides a control without application. Soil samples were collected for determination of soil respiratory rate (RR), microbial biomass carbon (MBC), metabolic quotient (qCO2), and colonization of roots by arbuscular mycorrhizal fungi at the 30 and 60 days after applications (DAA) of the herbicides. Fluazifop-p-butyl increased the RR, MBC and the percentage of cassava roots colonized by mycorrhizal fungi in the assessment performed at 60 DAA. The larger effects of mesotrione on soil microbial indicators were up to 30 DAA, being the changes minimized at 60 DAA. It is concluded that the herbicides alter the soil microbial indicators, with effects dependent of the product, of dose applied and also of the period of assessment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Judged by their negative nutrient balances, low soil cover and low productivity, the predominant agro-pastoral farming systems in the Sudano-Sahelian zone of West Africa are highly unsustainable for crop production intensification. With kaolinite as the main clay type, the cation exchange capacity of the soils in this region, often less than 1 cmol_c kg^-1 soil, depends heavily on the organic carbon (Corg) content. However, due to low carbon sequestration and to the microbe, termite and temperature-induced rapid turnover rates of organic material in the present land-use systems, Corg contents of the topsoil are very low, ranging between 1 and 8 g kg^-1 in most soils. For sustainable food production, the availability of phosphorus (P) and nitrogen (N) has to be increased considerably in combination with an improvement in soil physical properties. Therefore, the adoption of innovative management options that help to stop or even reverse the decline in Corg typically observed after cultivating bush or rangeland is of utmost importance. To maintain food production for a rapidly growing population, targeted applications of mineral fertilisers and the effective recycling of organic amendments as crop residues and manure are essential. Any increase in soil cover has large effects in reducing topsoil erosion by wind and water and favours the accumulation of wind-blown dust high in bases which in turn improves P availability. In the future decision support systems, based on GIS, modelling and simulation should be used to combine (i) available fertiliser response data from on-station and on-farm research, (ii) results on soil productivity restoration with the application of mineral and organic amendments and (iii) our present understanding of the cause-effect relationships governing the prevailing soil degradation processes. This will help to predict the effectiveness of regionally differentiated soil fertility management approaches to maintain or even increase soil Corg levels.