993 resultados para Soil compaction.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this work was to model and diagnose the spatial variability of soil load support capacity (SLSC) in sugar cane crop fields, as well as to evaluate the management impact on São Paulo State soil structure. The investigated variables were: pressure preconsolidation (sigma(p)), apparent cohesion () and internal friction angle (). The conclusions from the results were that the models and spatial dependence maps constitute important tools in the prediction and location of the mechanical internal strength of soils cultivated with sugar cane. They will help future soil management decisions so that soil structure sustainability will not be compromised.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil compaction reduces root growth, affecting the yield, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in greenhouses are necessary to develop mechanisms which alleviate soil compaction problems. The selection of three distinct bulk densities based on the Standard Proctor Test is also an important factor to determine which bulk density restricts root penetration. This experiment was conducted to evaluate cotton (Gossypium hirsutum L.) root volume and root dry matter as a function of soil bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6 g cm-3), and two levels of water content (70 and 90% of field capacity) were used. A completely randomized design with four replicates in a 3×2 factorial pattern was used. The results showed that mechanical impedance affected root volume positively with soil bulk density of 1.2 and 1.6 g cm-3, enhancing root growth (P>0.0064). Soil water content reduced root growth as root and shoot growth was higher at 70% field capacity than that at 90% field capacity. Shoot growth was not affected by the increase in soil bulk density and this result suggests that soil bulk density is not a good indicator for measuring mechanical impedance in some soils.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mechanical chiseling has been used to alleviate the effects of compaction in soils under no-tillage (NT). However, its effect on the soil physical properties does not seem to have a defined duration period. The purpose of this study was to evaluate the behavior of the bulk density (BD) and degree of compaction (DC) at different soil depths, after chiseling in no-tillage, for one year. The experiment was performed in Ponta Grossa, Paraná State, Brazil, using an Oxisol (Rhodic Hapludox). Bulk density and DC were previously measured in an area under NT for 16 years, then immediately after chiseling (CHI) in May 2009, six months after chiseling (CHI6M) in October 2009 and one year after chiseling (CHI12M) in May 2010. In the layers 0.0-0.10, 0.10-0.20 and 0.20-0.30 m, there was a significant BD reduction CHI and a marked increase CHI6M. The BD values measured CHI12M were similar to those before tillage. Chiseling reduced the DC in the layers 0.0-0.10 m and 0.10-0.20 m, but returned to the initial values one year later. During the evaluation periods CHI, CHI6M and CHI12M, the BD increased in the layer 0.30-0.40 m, compared with NT. The highest DC values were observed six months after chiseling; nevertheless the structural recovery of the soil was considerable, possibly due to the high degree of soil resilience and the influence of the wetting and drying cycles detected in the study period. The chiseling effects, evaluated by BD and DC, lasted less than one year, i.e., the beneficial short-term effects of chiseling on the reduction of the surface BD increased the risk of compaction in deeper soil layers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The area cultivated using conservation tillage has recently increased in central Spain. However, soil compaction and water retention with conservation tillage still remains a genuine concern for landowners in this region be- cause of its potential effect on the crop growth and yield. The aim of this research is to determine the short- term influences of four tillage treatments on soil physical properties. In the experiment, bulk density, cone index, soil water potential, soil temperature and maize (Zea mays L.) productivity have been measured. A field experiment was established in spring of 2013 on a loamy soil. The experiment compared four tillage methods (zero tillage, ZT; reservoir tillage, RT; minimum tillage, MT; and conventional tillage, CT). Soil bulk density and soil cone index were measured during maize growing season and at harvesting time. Furthermore, the soil water potential was monitored by using a wireless sensors network with sensors at 20 and 40 cm depths. Also, soil temperatures were registered at depths of 5 and 12 cm. Results indicated that there were significant differ- ences between soil bulk density and cone index of ZT method and those of RT, MT, and CT, during the growing season; although, this difference was not significant at the time of harvesting in some soil layers. Overall, in most soil layers, tillage practice affected bulk density and cone index in the order: ZT N RT N MT N CT. Regardless oftheentireobservationperiod,results exhibited that soils under ZT and RT treatments usually resulted in higher water potential and lower soil temperature than the other two treatments at both soil depths. In addition, clear differences in maize grain yield were observed between ZT and CT treatments, with a grain yield (up to 15.4%) increase with the CT treatment. On the other hand, no significant differences among (RT, MT, and CT) on maizeyieldwerefound.Inconclusion,the impact of soil compaction increase and soil temperature decrease,pro- duced by ZT treatment is a potential reason for maize yield reduction in this tillage method. We found that RT could be certainly a viable option for farmers incentral Spain,particularly when switching to conservation tillage from conventional tillage. This technique showed a moderate and positive effect on soil physical properties and increased maize yields compared to ZT and MT, and provides an opportunity to stabilize maize yields compared to CT.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Globally, increasing demands for biofuels have intensified the rate of land-use change (LUC) for expansion of bioenergy crops. In Brazil, the world\'s largest sugarcane-ethanol producer, sugarcane area has expanded by 35% (3.2 Mha) in the last decade. Sugarcane expansion has resulted in extensive pastures being subjected to intensive mechanization and large inputs of agrochemicals, which have direct implications on soil quality (SQ). We hypothesized that LUC to support sugarcane expansion leads to overall SQ degradation. To test this hypothesis we conducted a field-study at three sites in the central-southern region, to assess the SQ response to the primary LUC sequence (i.e., native vegetation to pasture to sugarcane) associated to sugarcane expansion in Brazil. At each land use site undisturbed and disturbed soil samples were collected from the 0-10, 10-20 and 20-30 cm depths. Soil chemical and physical attributes were measured through on-farm and laboratory analyses. A dataset of soil biological attributes was also included in this study. Initially, the LUC effects on each individual soil indicator were quantified. Afterward, the LUC effects on overall SQ were assessed using the Soil Management Assessment Framework (SMAF). Furthermore, six SQ indexes (SQI) were developed using approaches with increasing complexity. Our results showed that long-term conversion from native vegetation to extensive pasture led to soil acidification, significant depletion of soil organic carbon (SOC) and macronutrients [especially phosphorus (P)] and severe soil compaction, which creates an unbalanced ratio between water- and air-filled pore space within the soil and increases mechanical resistance to root growth. Conversion from pasture to sugarcane improved soil chemical quality by correcting for acidity and increasing macronutrient levels. Despite those improvements, most of the P added by fertilizer accumulated in less plant-available P forms, confirming the key role of organic P has in providing available P to plants in Brazilian soils. Long-term sugarcane production subsequently led to further SOC depletions. Sugarcane production had slight negative impacts on soil physical attributes compared to pasture land. Although tillage performed for sugarcane planting and replanting alleviates soil compaction, our data suggested that the effects are short-term with persistent, reoccurring soil consolidation that increases erosion risk over time. These soil physical changes, induced by LUC, were detected by quantitative soil physical properties as well as by visual evaluation of soil structure (VESS), an on-farm and user-friendly method for evaluating SQ. The SMAF efficiently detected overall SQ response to LUC and it could be reliably used under Brazilian soil conditions. Furthermore, since all of the SQI values developed in this study were able to rank SQ among land uses. We recommend that simpler and more cost-effective SQI strategies using a small number of carefully chosen soil indicators, such as: pH, P, K, VESS and SOC, and proportional weighting within of each soil sectors (chemical, physical and biological) be used as a protocol for SQ assessments in Brazilian sugarcane areas. The SMAF and SQI scores suggested that long-term conversion from native vegetation to extensive pasture depleted overall SQ, driven by decreases in chemical, physical and biological indicators. In contrast, conversion from pasture to sugarcane had no negative impacts on overall SQ, mainly because chemical improvements offset negative impacts on biological and physical indicators. Therefore, our findings can be used as scientific base by farmers, extension agents and public policy makers to adopt and develop management strategies that sustain and/or improving SQ and the sustainability of sugarcane production in Brazil.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, we seeded a native plant species and applied a mulch of chopped wood originating from the same burned area to avoid the establishment of invasive species. We evaluated four treatments: (1) seeding, (2) mulch, (3) seeding and mulch, and (4) control. Our objective was to increase plant recovery and to minimize the soil erosion and degradation. The study was conducted in Alicante, Spain in Torremanzanas forest of the semi-arid Mediterranean bioclimatic area after the wildfire of November, 2002. During three years of monitoring, we find that combined treatment: seeding and mulch increased the post fire plant recovery 20% approximately more than the rest of treatments and the control plots. We also found that seven months after treating mulch and seeding and mulch treatments presented a gain of soil: +5.18 to + 5.24 mm while the seeding treatment and control plots presented soil loss rates of: −0.48 to −0.49 mm. In addition, mulch treatment significantly decreased soil compaction to the half, and increased the infiltration capacity to 40 ml.mn−1 more than in plots without mulch, as well as increased the soil respiration to the double compared with no mulch plots. Work in progress confirms the positive effect of chopped wood as mulching treatment with or without seeding on the soil protection against soil erosion, and the amelioration of bio-physical properties after wildfires in the Mediterranean semi-arid burned areas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil compaction has been recognised as the greatest problem in terms of damage to Australia's soil resource. Compaction by tractor and harvester tyres, related to trafficking of wet soil, is one source of the problem. In this paper an array of soil properties was measured before and immediately after the application of a known compaction force to a wet Vertisol, A local grain harvester was used on soil that was just trafficable; a common scenario at harvest. The primary aim was to determine the changes in various soil properties in order to provide a benchmark against which the effectiveness of future remedial treatments could be evaluated. A secondary aim was a comparison of the measurements' efficiency to assess a soil's structural degradation status. Also assessed was the subsequent effect of the applied compaction on wheat growth and yield in the following cropping season. Nine of the soil properties measured gave statistically significant differences as a result of the soil compaction. Differences were mostly restricted to the top 0.2 m of the soil. The greatest measured depth of effect was decreased soil porosity to 0.4 m measured from intact soil clods. There was 72% emergence of the wheat crop planted into the compact soil and 93% in the uncompact soil. Wheat yield, however, was not affected by the compaction. This may demonstrate that wheat, growing on a full profile of stored soil water as did the current crop, may be little affected by compaction, Also, wheat may have potential to facilitate rapid repair of the damage in a Vertisol such as the current soil by drying the topsoil between rainfall events so increasing shrinking and swelling cycles. If this is true, then sowing a suitable crop species in a Vertisol may be a better option than tillage for repairing compaction damage by agricultural traffic. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study evaluates the spatial variability of saturated hydraulic conductivity in the soil in an area of 51,850 ha at the headwaters of the Araguaia River MT/GO. This area is highly vulnerable because it is a location of recharging through natural water infiltration of the Guarani Aquifer System and an area of intense increases in agriculture since its adoption by growers in the last 30 years. Soil samples were collected at 383 points, geographically located by GPS. The samples were collected from depths of 0 - 20 cm and 60 - 80 cm. Exploratory statistics and box-plot were used in the descriptive analysis and semivariogram were constructed to determine the spatial model. The exploratory analysis showed that the mean hydraulic conductivity in the superficial layer was less than at the level of 60-80 cm; however, the greatest variability evaluated with a coefficient of variation also was from this layer. Data tended towards a normal distribution. These results can be explained by the greater soil compaction in the superficial layer. The semivariogram models, adjusted for the two layers, were exponential and demonstrated moderate and strong dependence, with ranges of 5000 and 3000 utm respectively. It was concluded that soil use is influencing the spatial distribution model of the hydraulic conductivity in the region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Integrity of Real Time Kinematic (RTK) positioning solutions relates to the confidential level that can be placed in the information provided by the RTK system. It includes the ability of the RTK system to provide timely valid warnings to users when the system must not be used for the intended operation. For instance, in the controlled traffic farming (CTF) system that controls traffic separates wheel beds and root beds, RTK positioning error causes overlap and increases the amount of soil compaction. The RTK system’s integrity capacity can inform users when the actual positional errors of the RTK solutions have exceeded Horizontal Protection Levels (HPL) within a certain Time-To-Alert (TTA) at a given Integrity Risk (IR). The later is defined as the probability that the system claims its normal operational status while actually being in an abnormal status, e.g., the ambiguities being incorrectly fixed and positional errors having exceeded the HPL. The paper studies the required positioning performance (RPP) of GPS positioning system for PA applications such as a CTF system, according to literature review and survey conducted among a number of farming companies. The HPL and IR are derived from these RPP parameters. A RTK-specific rover autonomous integrity monitoring (RAIM) algorithm is developed to determine the system integrity according to real time outputs, such as residual square sum (RSS), HDOP values. A two-station baseline data set is analyzed to demonstrate the concept of RTK integrity and assess the RTK solution continuity, missed detection probability and false alarm probability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nutrient mass balances have been used to assess a variety of land resource scenarios, at various scales. They are widely used as a simple basis for policy, planning, and regulatory decisions but it is not clear how accurately they reflect reality. This study provides a critique of broad-scale nutrient mass balances, with particular application to the fertiliser use of beef lot-feeding manure in Queensland. Mass balances completed at the district and farm scale were found to misrepresent actual manure management behaviour and potentially the risk of nutrient contamination of water resources. The difficulties of handling stockpile manure and concerns about soil compaction mean that manure is spread thickly over a few paddocks at a time and not evenly across a whole farm. Consequently, higher nutrient loads were applied to a single paddock less frequently than annually. This resulted in years with excess nitrogen, phosphorus, and potassium remaining in the soil profile. This conclusion was supported by evidence of significant nutrient movement in several of the soil profiles studied. Spreading manure is profitable, but maximum returns can be associated with increased risk of nutrient leaching relative to conventional inorganic fertiliser practices. Bio-economic simulations found this increased risk where manure was applied to supply crop nitrogen requirements (the practice of the case study farms, 200-5000 head lot-feeders). Thus, the use of broad-scale mass balances can be misleading because paddock management is spatially heterogeneous and this leads to increased local potential for nutrient loss. In response to the effect of spatial heterogeneity policy makers who intend to use mass balance techniques to estimate potential for nutrient contamination should apply these techniques conservatively.