886 resultados para Software engineering.
Resumo:
Supervisor: Duarte Nuno Jardim Nunes
Resumo:
The purpose of this study was to identify whether activity modeling framework supports problem analysis and provides a traceable and tangible connection from the problem identification up to solution modeling. Methodology validation relied on a real problem from a Portuguese teaching syndicate (ASPE), regarding courses development and management. The study was carried out with a perspective to elaborate a complete tutorial of how to apply activity modeling framework to a real world problem. Within each step of activity modeling, we provided a summary elucidation of the relevant elements required to perform it, pointed out some improvements and applied it to ASPE’s real problem. It was found that activity modeling potentiates well structured problem analysis as well as provides a guiding thread between problem and solution modeling. It was concluded that activity-based task modeling is key to shorten the gap between problem and solution. The results revealed that the solution obtained using activity modeling framework solved the core concerns of our customer and allowed them to enhance the quality of their courses development and management. The principal conclusion was that activity modeling is a properly defined methodology that supports software engineers in problem analysis, keeping a traceable guide among problem and solution.
Resumo:
[ES] El reto de conseguir una red eléctrica más eficiente pasa por la introducción masiva de energías renovables en la red eléctrica, disminuyendo así las emisiones de CO2. Por ello, se propone no sólo controlar la producción, como se ha hecho hasta ahora, sino que también se propone controlar la demanda. Por ello, en esta investigación se evalúa el uso de la Ingeniería Dirigida por Modelos para gestionar la complejidad en el modelado de redes eléctricas, la Inteligencia de Negocio para analizar la gran cantidad de datos de simulaciones y la Inteligencia Colectiva para optimizar el reparto de energía entre los millones de dispositivos que se encuentran en el lado de la demanda.
Resumo:
To what extent is “software engineering really “engineering as this term is commonly understood? A hallmark of the products of the traditional engineering disciplines is trustworthiness based on dependability. But in his keynote presentation at ICSE 2006 Barry Boehm pointed out that individuals’, systems’, and peoples’ dependency on software is becoming increasingly critical, yet that dependability is generally not the top priority for software intensive system producers. Continuing in an uncharacteristic pessimistic vein, Professor Boehm said that this situation will likely continue until a major software-induced system catastrophe similar in impact to the 9/11 World Trade Center catastrophe stimulates action toward establishing accountability for software dependability. He predicts that it is highly likely that such a software-induced catastrophe will occur between now and 2025. It is widely understood that software, i.e., computer programs, are intrinsically different from traditionally engineered products, but in one aspect they are identical: the extent to which the well-being of individuals, organizations, and society in general increasingly depend on software. As wardens of the future through our mentoring of the next generation of software developers, we believe that it is our responsibility to at least address Professor Boehm’s predicted catastrophe. Traditional engineering has, and continually addresses its social responsibility through the evolution of the education, practice, and professional certification/licensing of professional engineers. To be included in the fraternity of professional engineers, software engineering must do the same. To get a rough idea of where software engineering currently stands on some of these issues we conducted two surveys. Our main survey was sent to software engineering academics in the U.S., Canada, and Australia. Among other items it sought detail information on their software engineering programs. Our auxiliary survey was sent to U.S. engineering institutions to get some idea about how software engineering programs compared with those in established engineering disciplines of Civil, Electrical, and Mechanical Engineering. Summaries of our findings can be found in the last two sections of our paper.
Resumo:
Many schools do not begin to introduce college students to software engineering until they have had at least one semester of programming. Since software engineering is a large, complex, and abstract subject it is difficult to construct active learning exercises that build on the students’ elementary knowledge of programming and still teach basic software engineering principles. It is also the case that beginning students typically know how to construct small programs, but they have little experience with the techniques necessary to produce reliable and long-term maintainable modules. I have addressed these two concerns by defining a local standard (Montana Tech Method (MTM) Software Development Standard for Small Modules Template) that step-by-step directs students toward the construction of highly reliable small modules using well known, best-practices software engineering techniques. “Small module” is here defined as a coherent development task that can be unit tested, and can be car ried out by a single (or a pair of) software engineer(s) in at most a few weeks. The standard describes the process to be used and also provides a template for the top-level documentation. The instructional module’s sequence of mini-lectures and exercises associated with the use of this (and other) local standards are used throughout the course, which perforce covers more abstract software engineering material using traditional reading and writing assignments. The sequence of mini-lectures and hands-on assignments (many of which are done in small groups) constitutes an instructional module that can be used in any similar software engineering course.
Resumo:
In recent years, education authorities worldwide, including the German Federal Government, have invested heavily in the development of e-learning and multimedia materials for institutions of higher learning. While for some subject matters the benefits of e-learning seem obvious, there are subjects, often consisting of a number of tenuously connected topics or requiring a balance of learning and training, for which it is a valid question whether appropriate learning materials can be presented via the Internet. Software Engineering belongs to this second group, both for its broad collection of topics and, particularly, for the required emphasis on teamwork and communication training.