986 resultados para Small-error approximation
Resumo:
We study the spin-1/2 Ising model on a Bethe lattice in the mean-field limit, with the interaction constants following one of two deterministic aperiodic sequences, the Fibonacci or period-doubling one. New algorithms of sequence generation were implemented, which were fundamental in obtaining long sequences and, therefore, precise results. We calculate the exact critical temperature for both sequences, as well as the critical exponents beta, gamma, and delta. For the Fibonacci sequence, the exponents are classical, while for the period-doubling one they depend on the ratio between the two exchange constants. The usual relations between critical exponents are satisfied, within error bars, for the period-doubling sequence. Therefore, we show that mean-field-like procedures may lead to nonclassical critical exponents.
Resumo:
This paper describes a new and simple method to determine the molecular weight of proteins in dilute solution, with an error smaller than similar to 10%, by using the experimental data of a single small-angle X-ray scattering (SAXS) curve measured on a relative scale. This procedure does not require the measurement of SAXS intensity on an absolute scale and does not involve a comparison with another SAXS curve determined from a known standard protein. The proposed procedure can be applied to monodisperse systems of proteins in dilute solution, either in monomeric or multimeric state, and it has been successfully tested on SAXS data experimentally determined for proteins with known molecular weights. It is shown here that the molecular weights determined by this procedure deviate from the known values by less than 10% in each case and the average error for the test set of 21 proteins was 5.3%. Importantly, this method allows for an unambiguous determination of the multimeric state of proteins with known molecular weights.
Resumo:
This paper addresses the time-variant reliability analysis of structures with random resistance or random system parameters. It deals with the problem of a random load process crossing a random barrier level. The implications of approximating the arrival rate of the first overload by an ensemble-crossing rate are studied. The error involved in this so-called ""ensemble-crossing rate"" approximation is described in terms of load process and barrier distribution parameters, and in terms of the number of load cycles. Existing results are reviewed, and significant improvements involving load process bandwidth, mean-crossing frequency and time are presented. The paper shows that the ensemble-crossing rate approximation can be accurate enough for problems where load process variance is large in comparison to barrier variance, but especially when the number of load cycles is small. This includes important practical applications like random vibration due to impact loadings and earthquake loading. Two application examples are presented, one involving earthquake loading and one involving a frame structure subject to wind and snow loadings. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
On this paper, the results of an experimental study oil the hydraulic friction loss for small-diameter polyethylene pipes are reported. The experiment was carried out using a range of Reynolds number between 6000 to 72000, obtained by varying discharge at 20 degrees C water temperature, with internal pipe diameters of 10.0 mm, 12.9 mm, 16.1 mm, 17.4 mm and 19.7 mm. According to the analysis results and experimental conditions, the friction factor 0 of the Darcy-Weisbach equation call be estimated with c = 0.300 and m = 0.25. The Blasius equation (c = 0.316 and m = 0.25) gives an overestimate of friction loss, although this fact is non-restrictive for micro-irrigation system designs. The analysis shows that both the Blasius and the adjusted equation parameters allow for accurate friction factor estimates, characterized by low mean error (5.1%).
Resumo:
This paper presents a method for estimating the posterior probability density of the cointegrating rank of a multivariate error correction model. A second contribution is the careful elicitation of the prior for the cointegrating vectors derived from a prior on the cointegrating space. This prior obtains naturally from treating the cointegrating space as the parameter of interest in inference and overcomes problems previously encountered in Bayesian cointegration analysis. Using this new prior and Laplace approximation, an estimator for the posterior probability of the rank is given. The approach performs well compared with information criteria in Monte Carlo experiments. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A small disturbance in the axisymmetric, bathtub-like flow with strong vorticity is considered and the asymptotic representation of the solution is found. It is shown that if the disturbance is smaller than a certain critical scale, the conventional strong vortex approximation cannot describe the field generated by the disturbance not only in the vicinity of the disturbance but also at the distances much larger than the critical scale. (C) 2001 American Institute of Physics.
Resumo:
Matrix spalling or crushing is one of the important mechanisms of fiber-matrix interaction of fiber reinforced cementitious composites (FRCC). The fiber pullout mechanisms have been extensively studied for an aligned fiber but matrix failure is rarely investigated since it is thought not to be a major affect. However, for an inclined fiber, the matrix failure should not be neglected. Due to the complex process of matrix spalling, experimental investigation and analytical study of this mechanism are rarely found in literature. In this paper, it is assumed that the load transfer is concentrated within the short length of the inclined fiber from the exit point towards anchored end and follows the exponential law. The Mindlin formulation is employed to calculate the 3D stress field. The simulation gives much information about this field. The 3D approximation of the stress state around an inclined fiber helps to qualitatively understand the mechanism of matrix failure. Finally, a spalling criterion is proposed by which matrix spalling occurs only when the stress in a certain volume, rather than the stress at a small point, exceeds the material strength. This implies some local stress redistribution after first yield. The stress redistribution results in more energy input and higher load bearing capacity of the matrix. In accordance with this hypothesis, the evolution of matrix spalling is demonstrated. The accurate prediction of matrix spalling needs the careful determination of the parameters in this model. This is the work of further study. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.
Resumo:
Introduction: Visual anomalies that affect school-age children represent an important public health problem. Data on the prevalence are lacking in Portugal but is needed for planning vision services. This study was conducted to determine the prevalence of strabismus, decreased visual acuity, and uncorrected refractive error in Portuguese children aged 6 to 11 years. Methods and materials: A cross-sectional study was carried out on a sample of 672 school-age children (7.69 ± 1.19 years). Children received an orthoptic assessment (visual acuity, ocular alignment, and ocular movements) and non-cycloplegic autorefraction. Results: After orthoptic assessment, 13.8% of children were considered abnormal (n = 93). Manifest strabismus was found in 4% of the children. Rates of esotropia (2.1%) were slightly higher than exotropia (1.8%). Strabismus rates were not statistically significant different per sex (p = 0.681) and grade (p = 0.228). Decreased visual acuity at distance was present in 11.3% of children. Visual acuity ≤20/66 (0.5 logMAR) was found in 1.3% of the children. We also found that 10.3% of children had an uncorrected refractive error. Conclusions: Strabismus affects a small proportion of the Portuguese school-age children. Decreased visual acuity and uncorrected refractive error affected a significant proportion of school-age children. New policies need to be developed to address this public health problem.
Resumo:
Mestrado em Radioterapia
Resumo:
This paper is mainly concerned with the tracking accuracy of Exchange Traded Funds (ETFs) listed on the London Stock Exchange (LSE) but also evaluates their performance and pricing efficiency. The findings show that ETFs offer virtually the same return but exhibit higher volatility than their benchmark. It seems that the pricing efficiency, which should come from the creation and redemption process, does not fully hold as equity ETFs show consistent price premiums. The tracking error of the funds is generally small and is decreasing over time. The risk of the ETF, daily price volatility and the total expense ratio explain a large part of the tracking error. Trading volume, fund size, bid-ask spread and average price premium or discount did not have an impact on the tracking error. Finally, it is concluded that market volatility and the tracking error are positively correlated.
Resumo:
In this article, we present a new approach of Nekhoroshev theory for a generic unperturbed Hamiltonian which completely avoids small divisors problems. The proof is an extension of a method introduced by P. Lochak which combines averaging along periodic orbits with simultaneous Diophantine approximation and uses geometric arguments designed by the second author to handle generic integrable Hamiltonians. This method allows to deal with generic non-analytic Hamiltonians and to obtain new results of generic stability around linearly stable tori.
Resumo:
Møller-Plesset (MP2) and Becke-3-Lee-Yang-Parr (B3LYP) calculations have been used to compare the geometrical parameters, hydrogen-bonding properties, vibrational frequencies and relative energies for several X- and X+ hydrogen peroxide complexes. The geometries and interaction energies were corrected for the basis set superposition error (BSSE) in all the complexes (1-5), using the full counterpoise method, yielding small BSSE values for the 6-311 + G(3df,2p) basis set used. The interaction energies calculated ranged from medium to strong hydrogen-bonding systems (1-3) and strong electrostatic interactions (4 and 5). The molecular interactions have been characterized using the atoms in molecules theory (AIM), and by the analysis of the vibrational frequencies. The minima on the BSSE-counterpoise corrected potential-energy surface (PES) have been determined as described by S. Simón, M. Duran, and J. J. Dannenberg, and the results were compared with the uncorrected PES
Resumo:
Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small
Resumo:
Geometries, vibrational frequencies, and interaction energies of the CNH⋯O3 and HCCH⋯O3 complexes are calculated in a counterpoise-corrected (CP-corrected) potential-energy surface (PES) that corrects for the basis set superposition error (BSSE). Ab initio calculations are performed at the Hartree-Fock (HF) and second-order Møller-Plesset (MP2) levels, using the 6-31G(d,p) and D95++(d,p) basis sets. Interaction energies are presented including corrections for zero-point vibrational energy (ZPVE) and thermal correction to enthalpy at 298 K. The CP-corrected and conventional PES are compared; the unconnected PES obtained using the larger basis set including diffuse functions exhibits a double well shape, whereas use of the 6-31G(d,p) basis set leads to a flat single-well profile. The CP-corrected PES has always a multiple-well shape. In particular, it is shown that the CP-corrected PES using the smaller basis set is qualitatively analogous to that obtained with the larger basis sets, so the CP method becomes useful to correctly describe large systems, where the use of small basis sets may be necessary