840 resultados para Small-Sized Business
Resumo:
The law and popular opinion expect boards of directors will actively monitor their organisations. Further, public opinion is that boards should have a positive impact on organisational performance. However, the processes of board monitoring and judgment are poorly understood, and board influence on organisational performance needs to be better understood. This thesis responds to the repeated calls to open the ‘black box’ linking board practices and organisational performance by investigating the processual behaviours of boards. The work of four boards1 of micro and small-sized nonprofit organisations were studied for periods of at least one year, using a processual research approach, drawing on observations of board meetings, interviews with directors, and the documents of the boards. The research shows that director turnover, the difficulty recruiting and engaging directors, and the administration of reporting, had strong impacts upon board monitoring, judging and/or influence. In addition, board monitoring of organisational performance was adversely affected by directors’ limited awareness of their legal responsibilities and directors’ limited financial literacy. Directors on average found all sources of information about their organisation’s work useful. Board judgments about the financial aspects of organisational performance were regulated by the routines of financial reporting. However, there were no comparable routines facilitating judgments about non-financial performance, and such judgments tended to be limited to specific aspects of performance and were ad hoc, largely in response to new information or the repackaging of existing information in a new form. The thesis argues that Weick’s theory of sensemaking offers insight into the way boards went about the task of understanding organisational performance. Board influence on organisational performance was demonstrated in the areas of: compliance; instrumental influence through service and through discussion and decision-making; and by symbolic, legitimating and protective means. The degree of instrumental influence achieved by boards depended on director competency, access to networks of influence, and understandings of board roles, and by the agency demonstrated by directors. The thesis concludes that there is a crowding out effect whereby CEO competence and capability limits board influence. The thesis also suggests that there is a second ‘agency problem’, a problem of director volition. The research potentially has profound implications for the work of nonprofit boards. Rather than purporting to establish a general theory of board governance, the thesis embraces calls to build situation-specific mini-theories about board behaviour.
Resumo:
Creative Industries was adopted as a platform in the 90s by the Blair government in the UK to describe the convergence of the arts, media, communication and information technologies as a newly formed cluster, providing economic and cultural capital for the knowledge economy. The philosophy and rhetoric which has grown around this concept (Leadbeater 2000, Castells 2000, Florida 2000, Caves 2000, Hartley 2000) has been influential in re-contextualising culture and the arts in the 21st century. Where governments and educational institutions have embraced the context of the creative industries, it is having a profound effect on the way arts are being positioned, originally as ‘creative content’ for the new economy. Countries and regions which have actively targeted the Creative Industries as an important economic growth factor in a post-industrial environment are numerous, but it is interesting to note that North and South East Asia and Australia have been at the forefront of developing the Creative Industries in its various guises. It could be argued that the initial phase of Creative Industries concentrated on media and communication technologies to provide commercial outcomes in small incubator business models; developing, for example, products for the games industry. Creative Industries is now entering a second phase of development; one in which the broader palette of the arts, though still not at the forefront of debate, is being re-examined. Both phases of Creative Industries have emphasised creativity and innovation as key drivers in the success and effectiveness of this sector, and although the arts by no means has a monopoly on these drivers, it is where they have an important part to play in the creative industries context. Arguably, the second wave of the creative industries acknowledges to a greater extent that commercialisation works in tandem with government and other support in a complex mixed economic model. In relation to the performing arts, the global market has seen an increase in large-scale cultural events such as festivals which are providing employment for the arts industry and multiplier effects in other parts of the economy. Differentiated product is important in this competitive arena and the use of mediated and digitised environments has been able to increase the amount of arts product available to an international market. This changed environment requires the development of new skills for our artists and producers and has given rise to a reappraisal of approaches to arts training and research in the Higher Degree Education sector (Brown 2007, Cunningham 2006). This paper examines pedagogical changes which took place in the first Creative Industries Faculty in the world at Queensland University of Technology as well as the increased opportunities for leading research initiatives. It concludes with the example of an interdisciplinary artwork produced in a creative industries precinct, exemplifying the convergence of arts and communication technologies and that of artistic practice and research.
Resumo:
Bulk and size-fractionated kaolinites from seven localities in Australia as well as the Clay Minerals Society Source Clays Georgia KGa-1 and KGa-2 have been studied by X-ray diffraction (XRD), laser scattering, and electron microscopy in order to understand the variation of particle characteristics across a range of environments and to correlate specific particle characteristics with intercalation behavior. All kaolinites have been intercalated with N-methyl (NMF) after pretreatment with hydrazine hydrate, and the relative efficiency of intercalation has been determined using XRD. Intercalate yields of kaolinite: NMF are consistently low for bulk samples that have a high proportion of small-sized particles (i.e., <0.5 µm) and for biphased kaolinites with a high percentage (>60%) of low-defect phase. In general, particle size appears to be a more significant controlling factor than defect distribution in determining the relative yield of kaolinite: NMF intercalate.
Resumo:
Bulk and size-fractionated kaolinites from seven localities in Australia as well as the Clay Minerals Society Source Clays Georgia KGa-1 and KGa-2 have been studied by X-ray diffraction (XRD), laser scattering, and electron microscopy in order to understand the variation of particle characteristics across a range of environments and to correlate specific particle characteristics with intercalation behavior. All kaolinites have been intercalated with N-methyl formamide (NMF) after pretreatment with hydrazine hydrate, and the relative efficiency of intercalation has been determined using XRD. Intercalate yields of kaolinite: NMF are consistently low for bulk samples that have a high proportion of small-sized particles (i.e., <0.5 µm) and for biphased kaolinites with a high percentage (>60%) of low-defect phase. In general, particle size appears to be a more significant controlling factor than defect distribution in determining the relative yield of kaolinite: NMF intercalate.
Resumo:
Particulate matter research is essential because of the well known significant adverse effects of aerosol particles on human health and the environment. In particular, identification of the origin or sources of particulate matter emissions is of paramount importance in assisting efforts to control and reduce air pollution in the atmosphere. This thesis aims to: identify the sources of particulate matter; compare pollution conditions at urban, rural and roadside receptor sites; combine information about the sources with meteorological conditions at the sites to locate the emission sources; compare sources based on particle size or mass; and ultimately, provide the basis for control and reduction in particulate matter concentrations in the atmosphere. To achieve these objectives, data was obtained from assorted local and international receptor sites over long sampling periods. The samples were analysed using Ion Beam Analysis and Scanning Mobility Particle Sizer methods to measure the particle mass with chemical composition and the particle size distribution, respectively. Advanced data analysis techniques were employed to derive information from large, complex data sets. Multi-Criteria Decision Making (MCDM), a ranking method, drew on data variability to examine the overall trends, and provided the rank ordering of the sites and years that sampling was conducted. Coupled with the receptor model Positive Matrix Factorisation (PMF), the pollution emission sources were identified and meaningful information pertinent to the prioritisation of control and reduction strategies was obtained. This thesis is presented in the thesis by publication format. It includes four refereed papers which together demonstrate a novel combination of data analysis techniques that enabled particulate matter sources to be identified and sampling site/year ranked. The strength of this source identification process was corroborated when the analysis procedure was expanded to encompass multiple receptor sites. Initially applied to identify the contributing sources at roadside and suburban sites in Brisbane, the technique was subsequently applied to three receptor sites (roadside, urban and rural) located in Hong Kong. The comparable results from these international and national sites over several sampling periods indicated similarities in source contributions between receptor site-types, irrespective of global location and suggested the need to apply these methods to air pollution investigations worldwide. Furthermore, an investigation into particle size distribution data was conducted to deduce the sources of aerosol emissions based on particle size and elemental composition. Considering the adverse effects on human health caused by small-sized particles, knowledge of particle size distribution and their elemental composition provides a different perspective on the pollution problem. This thesis clearly illustrates that the application of an innovative combination of advanced data interpretation methods to identify particulate matter sources and rank sampling sites/years provides the basis for the prioritisation of future air pollution control measures. Moreover, this study contributes significantly to knowledge based on chemical composition of airborne particulate matter in Brisbane, Australia and on the identity and plausible locations of the contributing sources. Such novel source apportionment and ranking procedures are ultimately applicable to environmental investigations worldwide.
Resumo:
Safety of repair, maintenance, alteration, and addition (RMAA) works have long been neglected because RMAAworks are often minute and only last for a short period of time. With rising importance of the RMAA sector in many developed societies, safety of RMAA works has begun to draw attention. Many RMAA contracting companies are small- and medium-sized enterprises (SMEs) that do not have comprehensive safety management systems. Existing safety legislation and regulations for new construction sites are not fully applicable to RMAAworks. Instead of relying on explicit and well-established safety systems, tacit safety knowledge plays an extremely important role in RMAA projects. To improve safety of RMAAworks, safety knowledge should be better managed. However, safety knowledge is difficult to capture in RMAA works. This study aims to examine safety management practices of RMAA contracting companies to see how safety knowledge of RMAA projects is managed. Findings show that RMAA contracting companies undertaking large-scale RMAA projects have more initiatives of safety management. Safety management of small-scale RMAA works relies heavily on the motivation of site supervisors and self-regulation of workers. Better tacit knowledge management improves safety performance. To enhance safety capability of RMAA contracting companies, a knowledge sharing culture should be cultivated. The government should provide assistance to SMEs to implement proper safety management practices in small-sized projects. Potentials of applying computer software technology in RMAA projects to capture, store, and retrieve safety information should be explored. Employees should be motivated to share safety knowledge by giving proper recognition to those who are willing to share.
Resumo:
This paper investigates compressed sensing using hidden Markov models (HMMs) and hence provides an extension of recent single frame, bounded error sparse decoding problems into a class of sparse estimation problems containing both temporal evolution and stochastic aspects. This paper presents two optimal estimators for compressed HMMs. The impact of measurement compression on HMM filtering performance is experimentally examined in the context of an important image based aircraft target tracking application. Surprisingly, tracking of dim small-sized targets (as small as 5-10 pixels, with local detectability/SNR as low as − 1.05 dB) was only mildly impacted by compressed sensing down to 15% of original image size.
Resumo:
We present a preparation procedure for small sized biocompatibly coated Ag nanoparticles with tunable surface plasmon resonances. The conditions were optimised with respect to the resonance Raman signal enhancement of heme proteins and to the preservation of the native protein structure....
Resumo:
The quantification and characterisation of soil phosphorus (P) is of agricultural and environmental importance and different extraction methods are widely used to asses the bioavailability of P and to characterize soil P reserves. However, the large variety of extractants, pre-treatments and sample preparation procedures complicate the comparison of published results. In order to improve our understanding of the behaviour and cycling of P in soil, it is crucial to know the scientific relevance of the methods used for various purposes. The knowledge of the factors affecting the analytical outcome is a prerequisite for justified interpretation of the results. The aim of this thesis was to study the effects of sample preparation procedures on soil P and to determine the dependence of the recovered P pool on the chemical nature of extractants. Sampling is a critical step in soil testing and sampling strategy is dependent on the land-use history and the purpose of sampling. This study revealed that pre-treatments changed soil properties and air-drying was found to affect soil P, particularly extractable organic P, by disrupting organic matter. This was evidenced by an increase in the water-extractable small-sized (<0.2 µm) P that, at least partly, took place at the expense of the large-sized (>0.2 µm) P. However, freezing induced only insignificant changes and thus, freezing can be taken to be a suitable method for storing soils from the boreal zone that naturally undergo periodic freezing. The results demonstrated that chemical nature of the extractant affects its sensitivity to detect changes in soil P solubility. Buffered extractants obscured the alterations in P solubility induced by pH changes; however, water extraction, though sensitive to physicochemical changes, can be used to reveal short term changes in soil P solubility. As for the organic P, the analysis was found to be sensitive to the sample preparation procedures: filtering may leave a large proportion of extractable organic P undetected, whereas the outcome of centrifugation was found to be affected by the ionic strength of the extractant. Widely used sequential fractionation procedures proved to be able to detect land-use -derived differences in the distribution of P among fractions of different solubilities. However, interpretation of the results from extraction experiments requires better understanding of the biogeochemical function of the recovered P fraction in the P cycle in differently managed soils under dissimilar climatic conditions.
Resumo:
Structural stability of small sized nonstoichiometric CdS nano clusters between zincblende and wurtzite structures has been investigated using first-principles density functional calculations. Our study shows that the relative stability of these two structures depends sensitively on whether the surface is S-terminated or Cd-terminated. The associated band gap also exhibits non-monotonic behavior as a function of cluster size. Our findings may shed light on contradictory reports of experimentally observed structures of CdS nano clusters found in the literature.
Resumo:
Aerosol particles can cause detrimental environmental and health effects. The particles and their precursor gases are emitted from various anthropogenic and natural sources. It is important to know the origin and properties of aerosols to efficiently reduce their harmful effects. The diameter of aerosol particles (Dp) varies between ~0.001 and ~100 μm. Fine particles (PM2.5: Dp < 2.5 μm) are especially interesting because they are the most harmful and can be transported over long distances. The aim of this thesis is to study the impact on air quality by pollution episodes of long-range transported aerosols affecting the composition of the boundary-layer atmosphere in remote and relatively unpolluted regions of the world. The sources and physicochemical properties of aerosols were investigated in detail, based on various measurements (1) in southern Finland during selected long-range transport (LRT) pollution episodes and unpolluted periods and (2) over the Atlantic Ocean between Europe and Antarctica during a voyage. Furthermore, the frequency of LRT pollution episodes of fine particles in southern Finland was investigated over a period of 8 years, using long-term air quality monitoring data. In southern Finland, the annual mean PM2.5 mass concentrations were low but LRT caused high peaks of daily mean concentrations every year. At an urban background site in Helsinki, the updated WHO guideline value (24-h PM2.5 mean 25 μg/m3) was exceeded during 1-7 LRT episodes each year during 1999-2006. The daily mean concentrations varied between 25 and 49 μg/m3 during the episodes, which was 3-6 times higher than the mean concentration in the long term. The in-depth studies of selected LRT episodes in southern Finland revealed that biomass burning in agricultural fields and wildfires, occurring mainly in Eastern Europe, deteriorated air quality on a continental scale. The strongest LRT episodes of fine particles resulted from open biomass-burning fires but the emissions from other anthropogenic sources in Eastern Europe also caused significant LRT episodes. Particle mass and number concentrations increased strongly in the accumulation mode (Dp ~ 0.09-1 μm) during the LRT episodes. However, the concentrations of smaller particles (Dp < 0.09 μm) remained low or even decreased due to the uptake of vapours and molecular clusters by LRT particles. The chemical analysis of individual particles showed that the proportions of several anthropogenic particle types increased (e.g. tar balls, metal oxides/hydroxides, spherical silicate fly ash particles and various calcium-rich particles) in southern Finland during an LRT episode, when aerosols originated from the polluted regions of Eastern Europe and some open biomass-burning smoke was also brought in by LRT. During unpolluted periods when air masses arrived from the north, the proportions of marine aerosols increased. In unpolluted rural regions of southern Finland, both accumulation mode particles and small-sized (Dp ~ 1-3 μm) coarse mode particles originated mostly from LRT. However, the composition of particles was totally different in these size fractions. In both size fractions, strong internal mixing of chemical components was typical for LRT particles. Thus, the aging of particles has significant impacts on their chemical, hygroscopic and optical properties, which can largely alter the environmental and health effects of LRT aerosols. Over the Atlantic Ocean, the individual particle composition of small-sized (Dp ~ 1-3 μm) coarse mode particles was affected by continental aerosol plumes to distances of at least 100-1000 km from the coast (e.g. pollutants from industrialized Europe, desert dust from the Sahara and biomass-burning aerosols near the Gulf of Guinea). The rate of chloride depletion from sea-salt particles was high near the coasts of Europe and Africa when air masses arrived from polluted continental regions. Thus, the LRT of continental aerosols had significant impacts on the composition of the marine boundary-layer atmosphere and seawater. In conclusion, integration of the results obtained using different measurement techniques captured the large spatial and temporal variability of aerosols as observed at terrestrial and marine sites, and assisted in establishing the causal link between land-bound emissions, LRT and air quality.
Resumo:
The area of intensively managed forests, in which required conditions for several liverwort species are seldom found, has expanded over the forest landscape during the last century. Liverworts are very sensitive to habitat changes, because they demand continuously moist microclimate. Consequently, about third of the forest liverworts have been classified as threatened or near threatened in Finland. The general objective of this thesis is to increase knowledge of the reproductive and dispersal strategies of the substrate-specific forest bryophytes. A further aim was to develop recommendations for conservation measures for species inhabiting unstable and stable habitats in forest landscape. Both population ecological and genetic methods have been applied in the research. Anastrophyllum hellerianum inhabits spatially and temporally limited substrate patches, decaying logs, which can be considered as unstable habitats. The results show that asexual reproduction by gemmae is the dominant mode of reproduction, whereas sexual reproduction is considerably infrequent. Unlike previously assumed, not only spores but also the asexual propagules may contribute to long-distance dispersal. The combination of occasional spore production and practically continuous, massive gemma production facilitates dispersal both on a local scale and over long distances, and it compensates for the great propagule losses that take place preceding successful establishment at suitable sites. However, establishment probability of spores may be restricted because of environmental and biological limitations linked to the low success of sexual reproduction. Long-lasting dry seasons are likely to result in a low success of sexual reproduction and decreased release rate of gemmae from the shoots, and consequent fluctuations in population sizes. In the long term, the substratum limitation is likely to restrict population sizes and cause local extinctions, especially in small-sized remnant populations. Contrastingly, larger forest fragments with more natural disturbance dynamics, to which the species is adapted, are pivotal to species survival. Trichocolea tomentella occupies stable spring and mesic habitats in woodland. The relatively small populations are increasingly fragmented with a high risk for extinction for extrinsic reasons. The results show that T. tomentella mainly invests in population persistence by effective clonal growth via forming independent ramets and in competitive ability, and considerably less in sexuality and dispersal potential. The populations possess relatively high levels of genetic diversity regardless of population size and of degree of isolation. Thus, the small-sized populations inhabiting stable habitats should not be neglected when establishing conservation strategies for the species and when considering the habitat protection of small spring sites. Restricted dispersal capacity, also on a relatively small spatial scale, is likely to prevent successful (re-)colonization in the potential habitat patches of recovering forest landscapes. By contrast, random short-range dispersal of detached vegetative fragments within populations at suitable habitat seems to be frequent. Thus, the restoration actions of spring and streamside habitats close to the populations of T. tomentella may contribute to population expansion. That, in turn, decreases the harmful effects of environmental stochasticity.
Resumo:
Experiments and computer simulation studies have revealed existence of rich dynamics in the orientational relaxation of molecules in confined systems such as water in reverse micelles, cyclodextrin cavities, and nanotubes. Here we introduce a novel finite length one dimensional Ising model to investigate the propagation and the annihilation of dynamical correlations in finite systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles. In our finite sized model, the two spins at the two end cells are oriented in the opposite directions to mimic the effects of surface that in real system fixes water orientation in the opposite directions. This produces opposite polarizations to propagate inside from the surface and to produce bulklike condition at the center. This model can be solved analytically for short chains. For long chains, we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm). We show that model nicely reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is nonexponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of relaxation of the spins undergoes a qualitative change with the emergence of a homogeneous dynamics where decay is predominantly exponential, again in agreement with experiments. (C) 2010 American Institute of Physics. doi: 10.1063/1.3474948]
Resumo:
The effective heating values of the above and below ground biomass components of mature Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy birch (Betula pubescens), silver birch (Betula pendula), grey alder (Alnus incana), black alder (Alnus glutinosa) and trembling aspen (Populus tremula) were studied. Each sample tree was divided into wood, bark and foliage components. Bomb calorimetry was used to determine the calorimetric heating values. The species is a significant factor in the heating value of individual tree components. The heating value of the wood proper is highest in conifers. Broad-leaved species have a higher heating value of bark than conifers. The species factor diminishes when the weighted heating value of crown, whole stems or stump-root-system are considered. The crown material has a higher heating value per unit weight in comparison with fuelwood from small-sized stems or wholetrees. The additional advantages of coniferous crown material are that it is a non-industrial biomass resource and is readily available. The variability of both the chemical composition and the heating value is small in any given tree component of any species. However, lignin, carbohydrate and extractive content were found to vary from one part of the tree to another and to correlate with the heating value.
Resumo:
Molecular dynamics simulations on Xe in NaY and Ar in NaCaA zeolite are reported. Rates of cage-to-cage crossovers in the two zeolites exhibit trends which are contrary to that expected from geometrical considerations. The results suggest the important role of the sorbate-zeolite interactions in determining the molecular sieve properties of zeolites for small sized sorbates. The results are explained in terms of the barrier height for cage-to-cage crossover in the two zeolites.