984 resultados para Small red brocket
Resumo:
A bipolar transport compound, 2,5-bis(4-(9-(2-ethylhexyl)-9H-carbazol-3-yl) phenyl)-1,3,4-oxadiazole (CzOXD), incorporating both electron-and hole-transport functionalities, was synthesized and fully characterized by H-1 NMR, C-13 NMR, elemental analysis and mass spectrometry. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied
Resumo:
"Developed in cooperation with the U.S. Small Business Administration, the Illinois Department of Commerce and Community Affairs, and the First Stop Business Information Center of Illinois as a service to Illinois small businesses under cooperative agreement #SB-2M-000097-16."--P. [4] of cover.
Resumo:
The adsorption of Congo Red (CR) by ball-milled sugarcane bagasse was evaluated in an aqueous batch system. CR adsorption capacity increased significantly with small changes in bagasse surface area. CR removal decreased with increasing solution pH from 5.0 to 10.0. Maximum adsorption capacity was 38.2 mg/g bagasse at a CR concentration of 500 mg/L. The equilibrium isotherm fitted the Freundlich model and the adsorption kinetics obeyed pseudo-second order equation. CR adsorption obeyed the intra-particle diffusion model very well with bagasse surface area in the range of 0.58–0.66 m2/g, whereas it was controlled by multi-adsorption stages with bagasse surface area in the range of 1.31–1.82 m2/g. Thermodynamic analysis indicated that the adsorption process is an exothermic and spontaneous process. Fourier transform infrared analysis of bagasse containing adsorbed CR indicated interactions between the carboxyl and hydroxyl groups of bagasse and CR function groups.
Resumo:
Rubus yellow net virus (RYNV) was cloned and sequenced from a red raspberry (Rubus idaeus L.) plant exhibiting symptoms of mosaic and mottling in the leaves. Its genomic sequence indicates that it is a distinct member of the genus Badnavirus, with 7932. bp and seven ORFs, the first three corresponding in size and location to the ORFs found in the type member Commelina yellow mottle virus. Bioinformatic analysis of the genomic sequence detected several features including nucleic acid binding motifs, multiple zinc finger-like sequences and domains associated with cellular signaling. Subsequent sequencing of the small RNAs (sRNAs) from RYNV-infected R. idaeus leaf tissue was used to determine any RYNV sequences targeted by RNA silencing and identified abundant virus-derived small RNAs (vsRNAs). The majority of the vsRNAs were 22-nt in length. We observed a highly uneven genome-wide distribution of vsRNAs with strong clustering to small defined regions distributed over both strands of the RYNV genome. Together, our data show that sequences of the aphid-transmitted pararetrovirus RYNV are targeted in red raspberry by the interfering RNA pathway, a predominant antiviral defense mechanism in plants. © 2013.
Resumo:
A benzothiadiazole end-capped small molecule 3,6-bis(5-(benzo[c][1,2,5] thiadiazol-4-yl)thiophen-2-yl)-2,5-bis(2-butyloctyl)pyrrolo[3,4-c]pyrrole-1, 4(2H,5H)-dione (BO-DPP-BTZ) using a fused aromatic moiety DPP (at the centre) is designed and synthesized. BO-DPP-BTZ is a donor-acceptor-donor (D-A-D) structure which possesses a band gap of 1.6 eV and exhibits a strong solid state ordering inferred from ∼120 nm red shift of the absorption maxima from solution to thin film. Field-effect transistors utilizing a spin coated thin film of BO-DPP-BTZ as an active layer exhibited a hole mobility of 0.06 cm 2 V-1 s-1. Solution-processed bulk heterojunction organic photovoltaics employing a blend of BO-DPP-BTZ and [70]PCBM demonstrated a power conversion efficiency of 0.9%.
Resumo:
1. Many organisms inhabit strongly fluctuating environments but their demography and population dynamics are often analysed using deterministic models and elasticity analysis, where elasticity is defined as the proportional change in population growth rate caused by a proportional change in a vital rate. Deterministic analyses may not necessarily be informative because large variation in a vital rate with a small deterministic elasticity may affect the population growth rate more than a small change in a less variable vital rate having high deterministic elasticity. 2. We analyse a stochastic environment model of the red kangaroo (Macropus rufus), a species inhabiting an environment characterized by unpredictable and highly variable rainfall, and calculate the elasticity of the stochastic growth rate with respect to the mean and variability in vital rates. 3. Juvenile survival is the most variable vital rate but a proportional change in the mean adult survival rate has a much stronger effect on the stochastic growth rate. 4. Even if changes in average rainfall have a larger impact on population growth rate, increased variability in rainfall may still be important also in long-lived species. The elasticity with respect to the standard deviation of rainfall is comparable to the mean elasticities of all vital rates but the survival in age class 3 because increased variation in rainfall affects both the mean and variability of vital rates. 5. Red kangaroos are harvested and, under the current rainfall pattern, an annual harvest fraction of c. 20% would yield a stochastic growth rate about unity. However, if average rainfall drops by more than c. 10%, any level of harvesting may be unsustainable, emphasizing the need for integrating climate change predictions in population management and increase our understanding of how environmental stochasticity translates into population growth rate.
Resumo:
The red flour beetle is a cosmopolitan pest of stored grain and stored grain products. The pest has developed resistance to phosphine, the primary chemical used for its control. The reproductive output of survivors from a phosphine treatment is an important element of resistance development but experimental data are lacking. We exposed mated resistant female beetles to 0.135 mg/L of phosphine for 48 h at 25°C. Following one week of recovery we provided two non-exposed males to half of the phosphine exposed females and to half of the non-exposed control females. Females that had been exposed produced significantly fewer offspring than non-exposed females. Females that remained isolated produced significantly fewer offspring than both exposed females with access to males and non-exposed controls (P<0.05). Some females were permanently damaged from exposure to phosphine and did not reproduce even when given access to males. We also examined the additional effects of starvation prior to phosphine exposure on offspring production. Non-exposed starved females experienced a small reduction in mean offspring production in the week following starvation, followed by a recovery in the second week. Females that were starved and exposed to phosphine demonstrated a very significant reduction in offspring production in the first week following exposure which remained significantly lower than that of starved non-exposed females (P<0.05). These results demonstrate a clear sublethal effect of phosphine acting on the female reproductive system and in some individuals this can lead to permanent reproductive damage. Pest population rebound after a fumigation may be slower than expected which may reduce the rate of phosphine resistance development. The results presented strongly suggest that phosphine resistance models should include sublethal effects. © 2012 Ridley et al.
Resumo:
Red mahogany produces a hard, durable and attractive timber. In the past, small quantities of timber harvested from native forest has been used in construction, engineering and for appearance products and round timbers. It has well-established national markets, particularly in Queensland and NSW. It is also known in the international market as it is grown in plantations in other tropical regions.
Resumo:
The life cycle and genetic diversity of the red alga Furcellaria lumbricalis (Hudson) Lamouroux were investigated in 15 populations in northern Europe. The occurrence of different life cycle phases and seasonality of reproduction were studied in four brackish populations in the northern Baltic Sea. Furthermore, a new method, based on genome screening with ISSR markers combined with a restriction-ligation method, was developed to discover microsatellite markers for population genetic analyses. The mitochondrial DNA cox2-3 spacer sequence and four microsatellite markers were used to examine the genetic diversity and differentiation of red algal populations in northern Europe. In addition, clonality and small-scale genetic structure of one Irish and four Baltic Sea populations were studied with microsatellite markers. It was discovered that at the low salinities of the northern Baltic Sea, only tetrasporophytes and males were present in the populations of F. lumbricalis and that winter was the main season for tetrasporangial production. Furthermore, the population occurring at the lowest salinity (3.6 practical salinity units, psu) did not produce spores. The size of the tetraspores was smaller in the Baltic Sea populations than that in the Irish population, and there were more deformed spores in the Baltic Sea populations than in the Irish populations. Studies with microsatellite markers indicated that clonality is a common phenomenon in the Baltic Sea populations of F. lumbricalis, although the proportion of clonal individuals varied among populations. Some genetic divergence occurred within locations both in Ireland and in the northern Baltic Sea. Even though no carpogonia were detected in the field samples during the study, the microsatellite data indicated that sexual reproduction occurs at least occasionally in the northern Baltic Sea. The genetic diversity of F. lumbricalis was highest in Brittany, France. Since no variation was discovered in the mtDNA cox2-3 spacer sequence, which is generally regarded as an informative phylogeographic marker in red algae, it can be assumed that the studied populations probably share the same origin.
Resumo:
Red fluorescent proteins (RFPs) have attracted significant engineering focus because of the promise of near infrared fluorescent proteins, whose light penetrates biological tissue, and which would allow imaging inside of vertebrate animals. The RFP landscape, which numbers ~200 members, is mostly populated by engineered variants of four native RFPs, leaving the vast majority of native RFP biodiversity untouched. This is largely due to the fact that native RFPs are obligate tetramers, limiting their usefulness as fusion proteins. Monomerization has imposed critical costs on these evolved tetramers, however, as it has invariably led to loss of brightness, and often to many other adverse effects on the fluorescent properties of the derived monomeric variants. Here we have attempted to understand why monomerization has taken such a large toll on Anthozoa class RFPs, and to outline a clear strategy for their monomerization. We begin with a structural study of the far-red fluorescence of AQ143, one of the furthest red emitting RFPs. We then try to separate the problem of stable and bright fluorescence from the design of a soluble monomeric β-barrel surface by engineering a hybrid protein (DsRmCh) with an oligomeric parent that had been previously monomerized, DsRed, and a pre-stabilized monomeric core from mCherry. This allows us to use computational design to successfully design a stable, soluble, fluorescent monomer. Next we took HcRed, which is a previously unmonomerized RFP that has far-red fluorescence (λemission = 633 nm) and attempted to monomerize it making use of lessons learned from DsRmCh. We engineered two monomeric proteins by pre-stabilizing HcRed’s core, then monomerizing in stages, making use of computational design and directed evolution techniques such as error-prone mutagenesis and DNA shuffling. We call these proteins mGinger0.1 (λem = 637 nm / Φ = 0.02) and mGinger0.2 (λem = 631 nm Φ = 0.04). They are the furthest red first generation monomeric RFPs ever developed, are significantly thermostabilized, and add diversity to a small field of far-red monomeric FPs. We anticipate that the techniques we describe will be facilitate future RFP monomerization, and that further core optimization of the mGingers may allow significant improvements in brightness.
Resumo:
Cases of red colouration in small lake basins, due to the abundant appearance of microorganisms have long been known. Usually it is caused by a fast, sudden, intensive propagation (so called ”bloom”) of Cyanophycae and bacteria. (e.g. Oscillatoracae, thiobacteria etc.). An exception to this is the red colouration of Tovel-See, an alpine lake basin in the Dolomites of the Brenta group (Trentino), lying at a height of 1178 m and hidden in the woodland of a valley. Here the red bloom has a double rhythm: a daily and a yearly rhythm. The colouration of one part of the lake takes place in the warmest months of the year (i.e. July, August, September) and in the middle hours of the day. The immediate origin of the bloom has been known for a long time: it is caused by the Peridinacae Glenodinium sanguineum. This paper describes the phenomenon of red colouration of the lake and discusses its conditions.
Resumo:
Background: Recent studies have clearly demonstrated the enormous virus diversity that exists among wild animals. This exemplifies the required expansion of our knowledge of the virus diversity present in wildlife, as well as the potential transmission of these viruses to domestic animals or humans. Methods: In the present study we evaluated the viral diversity of fecal samples (n = 42) collected from 10 different species of wild small carnivores inhabiting the northern part of Spain using random PCR in combination with next-generation sequencing. Samples were collected from American mink (Neovison vison), European mink (Mustela lutreola), European polecat (Mustela putorius), European pine marten (Martes martes), stone marten (Martes foina), Eurasian otter (Lutra lutra) and Eurasian badger (Meles meles) of the family of Mustelidae; common genet (Genetta genetta) of the family of Viverridae; red fox (Vulpes vulpes) of the family of Canidae and European wild cat (Felis silvestris) of the family of Felidae. Results: A number of sequences of possible novel viruses or virus variants were detected, including a theilovirus, phleboviruses, an amdovirus, a kobuvirus and picobirnaviruses. Conclusions: Using random PCR in combination with next generation sequencing, sequences of various novel viruses or virus variants were detected in fecal samples collected from Spanish carnivores. Detected novel viruses highlight the viral diversity that is present in fecal material of wild carnivores.
Resumo:
Red bream (Beryx decadactylus) is a commercially important deep-sea benthopelagic fish with a circumglobal distribution on insular and continental slopes and seamounts. In the United States, small numbers are caught incidentally in the wreckfish (Polyprion americanus) fishery which operates off the southeastern coast, but no biological information exists for the management of the U.S. red bream population. For this study, otoliths (n=163) and gonads (n=161) were collected from commercially caught red bream between 2003 and 2008 to determine life history parameters. Specimens ranged in size from 410 to 630 mm fork length and were all determined to be mature by histological examination of the gonads. Females in spawning condition were observed from June through September, and reproductively active males were found year-round. Sectioned otoliths were difficult to interpret, but maximum age estimates were much higher than the 15 years previously reported for this species from the eastern North Atlantic based on whole-otolith analysis. Estimated ages ranged from 8 to 69 years, and a minimum lifespan of 49 years was validated by using bomb radiocarbon dating. Natural mortality was estimated at 0.06/yr. This study shows that red bream are longer lived and more vulnerable to overfishing than previously assumed and should be managed carefully to prevent overexploitation.
Resumo:
We used 25 years of conventional tagging data (n= 6173 recoveries) and 3 years of ultrasonic telemetry data (n=105 transmitters deployed) to examine movement rates and directional preferences of four age classes of red drum (Sciaenops ocellatus) in estuarine and coastal waters of North Carolina. Movement rates of conventionally tagged red drum were dependent on the age, region, and season of tagging. Age-1 and age-2 red drum tagged along the coast generally moved along the coast, whereas fish tagged in oligohaline waters far from the coast were primarily recovered in coastal regions in fall months. Adult (age-4+) red drum moved from overwintering grounds on the continental shelf through inlets into Pamlico Sound in spring and summer months and departed in fall. Few tagged red drum were recovered in adjacent states (0.6% of all recoveries); however, some adult red drum migrated seasonally from overwintering grounds in coastal North Carolina northward to Virginia in spring, returning in fall. Age-2 transmitter-tracked red drum displayed seasonal emigration from a small tributary, but upstream and downstream movements within the tributary were correlated with fluctuating salinity regimes and not season. Large-scale conventional tagging and ultrasonic telemetry programs can provide valuable insights into the complex movement patterns of estuarine fish.