966 resultados para Small Heat Shock Protein
Resumo:
OBJECTIVES: Acute respiratory distress syndrome is a common and highly lethal inflammatory lung syndrome. We previously have shown that an adenoviral vector expressing the heat shock protein (Hsp)70 (AdHSP) protects against experimental sepsis-induced acute respiratory distress syndrome in part by limiting neutrophil accumulation in the lung. Neutrophil accumulation and activation is modulated, in part, by the nuclear factor-kappaB (NF-kappaB) signal transduction pathway. NF-kappaB activation requires dissociation/degradation of a bound inhibitor, IkappaBalpha. IkappaBalpha degradation requires phosphorylation by IkappaB kinase, ubiquitination by the SCFbeta-TrCP (Skp1/Cullin1/Fbox beta-transducing repeat-containing protein) ubiquitin ligase, and degradation by the 26S proteasome. We tested the hypothesis that Hsp70 attenuates NF-kappaB activation at multiple points in the IkappaBalpha degradative pathway. DESIGN: Laboratory investigation. SETTING: University medical center research laboratory. SUBJECTS: Adolescent (200 g) Sprague-Dawley rats and murine lung epithelial-12 cells in culture. INTERVENTIONS: Lung injury was induced in rats via cecal ligation and double puncture. Thereafter, animals were treated with intratracheal injection of 1) phosphate buffer saline, 2) AdHSP, or 3) an adenovirus expressing green fluorescent protein. Murine lung epithelial-12 cells were stimulated with tumor necrosis factor-alpha and transfected. NF-kappaB was examined using molecular biological tools. MEASUREMENTS AND MAIN RESULTS: Intratracheal administration of AdHSP to rats with cecal ligation and double puncture limited nuclear translocation of NF-kappaB and attenuated phosphorylation of IkappaBalpha. AdHSP treatment reduced, but did not eliminate, phosphorylation of the beta-subunit of IkappaB kinase. In vitro kinase activity assays and gel filtration chromatography revealed that treatment of sepsis-induced lung injury with AdHSP induced fragmentation of the IkappaB kinase signalosome. This stabilized intermediary complexes containing IkappaB kinase components, IkappaBalpha, and NF-kappaB. Cellular studies indicate that although ubiquitination of IkappaBalpha was maintained, proteasomal degradation was impaired by an indirect mechanism. CONCLUSIONS: Treatment of sepsis-induced lung injury with AdHSP limits NF-kappaB activation. This results from stabilization of intermediary NF-kappaB/IkappaBalpha/IkappaB kinase complexes in a way that impairs proteasomal degradation of IkappaBalpha. This novel mechanism by which Hsp70 attenuates an intracellular process may be of therapeutic value.
Resumo:
Heat shock protein 90 (Hsp90) is an essential chaperone involved in the fungal stress response that can be harnessed as a novel antifungal target for the treatment of invasive aspergillosis. We previously showed that genetic repression of Hsp90 reduced Aspergillus fumigatus virulence and potentiated the effect of the echinocandin caspofungin. In this study, we sought to identify sites of posttranslational modifications (phosphorylation or acetylation) that are important for Hsp90 function in A. fumigatus. Phosphopeptide enrichment and tandem mass spectrometry revealed phosphorylation of three residues in Hsp90 (S49, S288, and T681), but their mutation did not compromise Hsp90 function. Acetylation of lysine residues of Hsp90 was recovered after treatment with deacetylase inhibitors, and acetylation-mimetic mutations (K27A and K271A) resulted in reduced virulence in a murine model of invasive aspergillosis, supporting their role in Hsp90 function. A single deletion of lysine K27 or an acetylation-mimetic mutation (K27A) resulted in increased susceptibility to voriconazole and caspofungin. This effect was attenuated following a deacetylation-mimetic mutation (K27R), suggesting that this site is crucial and should be deacetylated for proper Hsp90 function in antifungal resistance pathways. In contrast to previous reports in Candida albicans, the lysine deacetylase inhibitor trichostatin A (TSA) was active alone against A. fumigatus and potentiated the effect of caspofungin against both the wild type and an echinocandin-resistant strain. Our results indicate that the Hsp90 K27 residue is required for azole and echinocandin resistance in A. fumigatus and that deacetylase inhibition may represent an adjunctive anti-Aspergillus strategy.
Resumo:
BACKGROUND: Reactive oxygen species production increases during aging, whereas protective mechanisms such as heat shock proteins (HSPs) or antioxidant capacity are depressed. Physical activity has been hypothesized to provide protection against oxidative damage during aging, but results remain controversial. This study aimed to investigate the effect of different levels of physical activity during aging on Hsp72 expression and systemic oxidative stress at rest and in response to maximal exercise. METHODS: Plasma antioxidant capacity (Trolox equivalent antioxidant capacity, TEAC), thiobarbituric acid-reactive species (TBARS), advanced oxidized proteins products (AOPP), and Hsp72 expression in leukocytes were measured before and after maximal exercise testing in 32 elderly persons (aged 73.2 years), who were assigned to two different groups depending on their level of physical activity during the past 12 months (OLow = moderate to low level; OHigh = higher level). RESULTS: The OHigh group showed higher aerobic fitness and TEAC (both representing 120% of OLow values) as well as lower oxidative damage (50% of OLow values) and Hsp72 expression. Exercise led to a lower increase in oxidative damage in the OHigh group. Aerobic fitness was positively correlated with TEAC and negatively with lipid peroxidation (TBARS). Hsp72 expression was negatively correlated with TEAC but positively correlated with TBARS levels. CONCLUSIONS: The key finding of this study is that, in people aged 60 to 90 years, long-term high level of physical activity preserved antioxidant capacity and limited oxidative damage accumulation. It also downregulated Hsp72 expression, an adaptation potentially resulting from lower levels of oxidative damage.
Resumo:
By means of confocal laser scanning microscopy and indirect fluorescence experiments we have examined the behavior of heat-shock protein 70 (HSP70) within the nucleus as well as of a nuclear matrix protein (M(r) = 125 kDa) during a prolonged heat-shock response (up to 24 h at 42 degrees C) in HeLa cells. In control cells HSP70 was mainly located in the cytoplasm. The protein translocated within the nucleus upon cell exposure to hyperthermia. The fluorescent pattern revealed by monoclonal antibody to HSP70 exhibited several changes during the 24-h-long incubation. The nuclear matrix protein showed changes in its location that were evident as early as 1 h after initiation of heat shock. After 7 h of treatment, the protein regained its original distribution. However, in the late stages of the hyperthermic treatment (17-24 h) the fluorescent pattern due to 125-kDa protein changed again and its original distribution was never observed again. These results show that HSP70 changes its localization within the nucleus conceivably because it is involved in solubilizing aggregated polypeptides present in different nuclear regions. Our data also strengthen the contention that proteins of the insoluble nucleoskeleton are involved in nuclear structure changes that occur during heat-shock response.
Resumo:
OBJECTIVE: Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN: Laboratory investigation. SETTING: Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS: Sprague-Dawley Rats (250 g). INTERVENTIONS: Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS: Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS: : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.
Resumo:
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.
Resumo:
We and others have reported mutations in LONP1, a gene coding for a mitochondrial chaperone and protease, as the cause of the human CODAS (cerebral, ocular, dental, auricular and skeletal) syndrome (MIM 600373). Here, we delineate a similar but distinct condition that shares the epiphyseal, vertebral and ocular changes of CODAS but also included severe microtia, nasal hypoplasia, and other malformations, and for which we propose the name of EVEN-PLUS syndrome for epiphyseal, vertebral, ear, nose, plus associated findings. In three individuals from two families, no mutation in LONP1 was found; instead, we found biallelic mutations in HSPA9, the gene that codes for mHSP70/mortalin, another highly conserved mitochondrial chaperone protein essential in mitochondrial protein import, folding, and degradation. The functional relationship between LONP1 and HSPA9 in mitochondrial protein chaperoning and the overlapping phenotypes of CODAS and EVEN-PLUS delineate a family of "mitochondrial chaperonopathies" and point to an unexplored role of mitochondrial chaperones in human embryonic morphogenesis.
Resumo:
Hormone replacement therapy (HRT) reduces cardiovascular risks, although the initiation of therapy may be associated with transient adverse ischemic and thrombotic events. Antibodies against heat shock protein (Hsp) and oxidized low density lipoprotein (LDL) have been found in atherosclerotic lesions and plasma of patients with coronary artery disease and may play an important role in the pathogenesis of atherosclerosis. The aim of the present study was to assess the effects of HRT on the immune response by measuring plasma levels of antibodies against Hsp 65 and LDL with a low and high degree of copper-mediated oxidative modification of 20 postmenopausal women before and 90 days after receiving orally 0.625 mg equine conjugate estrogen plus 2.5 mg medroxyprogesterone acetate per day. HRT significantly increased antibodies against Hsp 65 (0.316 ± 0.03 vs 0.558 ± 0.11) and against LDL with a low degree of oxidative modification (0.100 ± 0.01 vs 0.217 ± 0.02) (P<0.05 and P<0.001, respectively, ANOVA). The hormone-mediated immune response may trigger an inflammatory response within the vessel wall and potentially increase plaque burden. Whether or not this immune response is temporary or sustained and deleterious requires further investigation.
Resumo:
The serologic assay is an important tool in the diagnosis of leishmaniasis. One of the most commonly used tests is enzyme-linked immunosorbent assay (ELISA). Since total Leishmania promastigotes are used as antigen in the routine assay, false-positive reactions are frequent due to cross-reaction with sera from other diseases, mainly Chagas' disease. Therefore, an antigen that determines less cross-reactivity has been pursued for the serodiagnosis of leishmaniasis. In the present study we analyzed the use of recombinant Leishmania infantum heat shock protein (Hsp) 83 in ELISA for the serodiagnosis of cutaneous (N = 12) and mucocutaneous leishmaniasis (N = 14) and we observed the presence of anti-L. infantum Hsp 83 antibodies in all samples as well as anti-Leishmania total antigen antibodies. When cross-reactivity was tested, chronic Chagas' disease patients (N = 10) did not show any reactivity. Therefore, we consider this L. infantum Hsp 83 to be a good antigen for routine use for serodiagnosis of tegumentary leishmaniasis.
Resumo:
Nephrotoxicity is the main side effect of antibiotics such as gentamicin. Preconditioning has been reported to protect against injuries as ischemia/reperfusion. The objective of the present study was to determine the effect of preconditioning with gentamicin on LLC-PK1 cells. Preconditioning was induced in LLC-PK1 cells by 24-h exposure to 2.0 mM gentamicin (G/IU). After 4 or 15 days of preconditioning, cells were again exposed to gentamicin (2.0 mM) and compared to untreated control or G/IU cells. Necrosis and apoptosis were assessed by acridine orange and HOESCHT 33346. Nitric oxide (NO) and endothelin-1 were assessed by the Griess method and available kit. Heat shock proteins were analyzed by Western blotting. After 15 days of preconditioning, LLC-PK1 cells exhibited a significant decrease in necrosis (23.5 ± 4.3 to 6.5 ± 0.3%) and apoptosis (23.5 ± 4.3 to 6.5 ± 2.1%) and an increase in cell proliferation compared to G/IU. NO (0.177 ± 0.05 to 0.368 ± 0.073 µg/mg protein) and endothelin-1 (1.88 ± 0.47 to 2.75 ± 0.53 pg/mL) production significantly increased after 15 days of preconditioning compared to G/IU. No difference in inducible HSP 70, constitutive HSC 70 or HSP 90 synthesis in tubular cells was observed after preconditioning with gentamicin. The present data suggest that preconditioning with gentamicin has protective effects on proximal tubular cells, that involved NO synthesis but not reduction of endothelin-1 or production of HSP 70, HSC 70, or HSP 90. We conclude that preconditioning could be a useful tool to prevent the nephrotoxicity induced by gentamicin.
Resumo:
We used two-dimensional difference gel electrophoresis to determine early changes in the stress-response pathways that precede focal adhesion disorganization linked to the onset of apoptosis of renal epithelial cells. Treatment of LLC-PK1 cells with the model nephrotoxicant 1,2-(dichlorovinyl)-L-cysteine (DCVC) resulted in a >1.5-fold up- and down-regulation of 14 and 9 proteins, respectively, preceding the onset of apoptosis. Proteins included those involved in metabolism, i.e. aconitase and pyruvate dehydrogenase, and those related to stress responses and cytoskeletal reorganization, i.e. cofilin, Hsp27, and alpha-b-crystallin. The most prominent changes were found for Hsp27, which was related to a pI shift in association with an altered phosphorylation status of serine residue 82. Although both p38 and JNK were activated by DCVC, only inhibition of p38 with SB203580 reduced Hsp27 phosphorylation, which was associated with accelerated reorganization of focal adhesions, cell detachment, and apoptosis. In contrast, inhibition of JNK with SP600125 maintained cell adhesion as well as protection against apoptosis. Active JNK co-localized at focal adhesions after DCVC treatment in a FAK-dependent manner. Inhibition of active JNK localization at focal adhesions did not prevent DCVC-induced phosphorylation of Hsp27. Overexpression of a phosphorylation-defective mutant Hsp27 acted as a dominant negative and accelerated the DCVC-induced changes in the focal adhesions as well as the onset of apoptosis. Our data fit a model whereby early p38 activation results in a rapid phosphorylation of Hsp27, a requirement for proper maintenance of cell adhesion, thus suppressing renal epithelial cell apoptosis.
Resumo:
We used two-dimensional difference gel electrophoresis to determine early changes in the stress-response pathways that precede focal adhesion disorganization linked to the onset of apoptosis of renal epithelial cells. Treatment of LLC-PK1 cells with the model nephrotoxicant 1,2-(dichlorovinyl)-L-cysteine ( DCVC) resulted in a > 1.5-fold up- and down-regulation of 14 and 9 proteins, respectively, preceding the onset of apoptosis. Proteins included those involved in metabolism, i.e. aconitase and pyruvate dehydrogenase, and those related to stress responses and cytoskeletal reorganization, i.e. cofilin, Hsp27, and alpha-b-crystallin. The most prominent changes were found for Hsp27, which was related to a pI shift in association with an altered phosphorylation status of serine residue 82. Although both p38 and JNK were activated by DCVC, only inhibition of p38 with SB203580 reduced Hsp27 phosphorylation, which was associated with accelerated reorganization of focal adhesions, cell detachment, and apoptosis. In contrast, inhibition of JNK with SP600125 maintained cell adhesion as well as protection against apoptosis. Active JNK co-localized at focal adhesions after DCVC treatment in a FAK-dependent manner. Inhibition of active JNK localization at focal adhesions did not prevent DCVC-induced phosphorylation of Hsp27. Overexpression of a phosphorylation-defective mutant Hsp27 acted as a dominant negative and accelerated the DCVC-induced changes in the focal adhesions as well as the onset of apoptosis. Our data fit a model whereby early p38 activation results in a rapid phosphorylation of Hsp27, a requirement for proper maintenance of cell adhesion, thus suppressing renal epithelial cell apoptosis.
Resumo:
An hsc70 homologue gene (Rahsc70) of the diptera Rhynchosciara americana was isolated and characterized. We were able to determine the mRNA sequence from an EST of salivary gland cDNA library, and a Rahsc70 cDNA cassette was used as a probe to isolate the genomic region from a genomic library. The mRNA expression of this gene parallels the 2B puff expansion, suggesting its involvement in protein processing, since this larval period corresponds to a high synthetic activity period. During heat shock stress conditions, hsc70 expression decreased. In situ hybridization of polytene chromosomes showed that the Rahsc70 gene is located near the C3 DNA puff. The cellular localization of Hsc70 protein showed this protein in the cytoplasm and in the nucleus.