979 resultados para Site-directed Mutagenesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ophiobolin A, a fungal toxin that affects maize and rice, has previously been shown to inhibit calmodulin by reacting with the lysine (Lys) residues in the calmodulin. In the present study we mutated Lys-75, Lys-77, and Lys-148 in the calmodulin molecule by site-directed mutagenesis, either by deleting them or by changing them to glutamine or arginine. We found that each of these three Lys residues could bind one molecule of ophiobolin A. Normally, only Lys-75 and Lys-148 bind ophiobolin A. Lys-77 seemed to be blocked by the binding of ophiobolin A to Lys-75. Lys-75 is the primary binding site and is responsible for all of the inhibition of ophiobolin A. When Lys-75 was removed, Lys-77 could then react with ophiobolin A to produce inhibition. Lys-148 was shown to be a binding site but not an inhibition site. The Lys-75 mutants were partially resistant to ophiobolin A. When both Lys 75 and Lys-77 or all three Lys residues were mutated, the resulting calmodulins were very resistant to ophiobolin A. Furthermore, Lys residues added in positions 86 and/or 143 (which are highly conserved in plant calmodulins) did not react with ophiobolin A. None of the mutations seemed to affect the properties of calmodulin. These results show that ophiobolin A reacts quite specifically with calmodulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The x-ray crystallographic structure of the photosynthetic reaction center (RC) has proven critical in understanding biological electron transfer processes. By contrast, understanding of intraprotein proton transfer is easily lost in the immense richness of the details. In the RC of Rhodobacter (Rb.) sphaeroides, the secondary quinone (QB) is surrounded by amino acid residues of the L subunit and some buried water molecules, with M- and H-subunit residues also close by. The effects of site-directed mutagenesis upon RC turnover and quinone function have implicated several L-subunit residues in proton delivery to QB, although some species differences exist. In wild-type Rb. sphaeroides, Glu L212 and Asp L213 represent an inner shell of residues of particular importance in proton transfer to QB. Asp L213 is crucial for delivery of the first proton, coupled to transfer of the second electron, while Glu L212, possibly together with Asp L213, is necessary for delivery of the second proton, after the second electron transfer. We report here the first study, by site-directed mutagenesis, of the role of the H subunit in QB function. Glu H173, one of a cluster of strongly interacting residues near QB, including Asp L213, was altered to Gln. In isolated mutant RCs, the kinetics of the first electron transfer, leading to formation of the semiquinone, QB-, and the proton-linked second electron transfer, leading to the formation of fully reduced quinol, were both greatly retarded, as observed previously in the Asp L213 --> Asn mutant. However, the first electron transfer equilibrium, QA-QB <==> QAQB-, was decreased, which is opposite to the effect of the Asp L213 --> Asn mutation. These major disruptions of events coupled to proton delivery to QB were largely reversed by the addition of azide (N3-). The results support a major role for electrostatic interactions between charged groups in determining the protonation state of certain entities, thereby controlling the rate of the second electron transfer. It is suggested that the essential electrostatic effect may be to "potentiate" proton transfer activity by raising the pK of functional entities that actually transfer protons in a coupled fashion with the second electron transfer. Candidates include buried water (H3O+) and Ser L223 (serine-OH2+), which is very close to the O5 carbonyl of the quinone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biotinylated lactose permease from Escherichia coli containing a single-cysteine residue at position 330 (helix X) or at position 147, 148, or 149 (helix V) was purified by avidin-affinity chromatography and derivatized with 5-(alpha-bromoacetamido)-1,10-phenanthroline-copper [OP(Cu)]. Studies with purified, OP(Cu)-labeled Leu-330 --> Cys permease in dodecyl-beta-D-maltopyranoside demonstrate that after incubation in the presence of ascorbate, cleavage products of approximately 19 and 6-8 kDa are observed on immunoblots with anti-C-terminal antibody. Remarkably, the same cleavage products are observed with permease embedded in the native membrane. Comparison with the C-terminal half of the permease expressed independently as a standard indicates that the 19-kDa product results from cleavage near the cytoplasmic end of helix VII, whereas the 6- to 8-kDa fragment probably results from fragmentation near the cytoplasmic end of helix XI. Results are entirely consistent with a tertiary-structure model of the C-terminal half of the permease derived from earlier site-directed fluorescence and site-directed mutagenesis studies. Similar studies with OP(Cu)-labeled Cys-148 permease exhibit cleavage products at approximately 19 kDa and at 15-16 kDa. The larger fragment probably reflects cleavage at a site near the cytoplasmic end of helix VII, whereas the 15- to 16-kDa fragment is consistent with cleavage near the cytoplasmic end of helix VIII. When OP(Cu) is moved 100 degrees to position 149 (Val-149 --> Cys permease), a single product is observed at 19 kDa, suggesting fragmentation at the cytoplasmic end of helix VII. However, when the reagent is moved 100 degrees in the other direction to position 147 (Gly-147 --> Cys permease), cleavage is not observed. The results suggest that helix V is in close proximity to helices VII and VIII with position 148 in the interface between the helices, position 149 facing helix VII, and position 147 facing the lipid bilayer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lysine (Lys)-195 in the homotetrameric ADP-glucose pyrophosphorylase (ADPGlc PPase) from Escherichia coli was shown previously to be involved in the binding of the substrate glucose-1-phosphate (Glc-1-P). This residue is highly conserved in the ADPGlc PPase family. Site-directed mutagenesis was used to investigate the function of this conserved Lys residue in the large and small subunits of the heterotetrameric potato (Solanum tuberosum) tuber enzyme. The apparent affinity for Glc-1-P of the wild-type enzyme decreased 135- to 550-fold by changing Lys-198 of the small subunit to arginine, alanine, or glutamic acid, suggesting that both the charge and the size of this residue influence Glc-1-P binding. These mutations had little effect on the kinetic constants for the other substrates (ATP and Mg2+ or ADP-Glc and inorganic phosphate), activator (3-phosphoglycerate), inhibitor (inorganic phosphate), or on the thermal stability. Mutagenesis of the corresponding Lys (Lys-213) in the large subunit had no effect on the apparent affinity for Glc-1-P by substitution with arginine, alanine, or glutamic acid. A double mutant, SK198RLK213R, was also obtained that had a 100-fold reduction of the apparent affinity for Glc-1-P. The data indicate that Lys-198 in the small subunit is directly involved in the binding of Glc-1-P, whereas they appear to exclude a direct role of Lys-213 in the large subunit in the interaction with this substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA replication fork arrest during the termination phase of chromosome replication in Bacillus subtilis is brought about by the replication terminator protein (RTP) bound to specific DNA terminator sequences (Tev sites) distributed throughout the terminus region. An attractive suggestion by others was that crucial to the functioning of the RTP-Ter complex is a specific interaction between RTP positioned on the DNA and the helicase associated with the approaching replication fork. Ln support of this was the behaviour of two site-directed mutants of RTP. They appeared to bind Ter DNA normally but were ineffective in fork arrest as ascertained by in vitro Escherichia coli DnaB helicase and replication assays. We describe here a system for assessing the fork-arrest behaviour of RTP mutants in a bona fide in vivo assay in B. subtilis. One of the previously studied mutants, RTP.Y33N, was non-functional in fork arrest in vivo, as predicted. But through extensive analyses, this RTP mutant was shown to be severely defective in binding to Ter DNA, contrary to expectation. Taken in conjunction with recent findings on the other mutant (RTP.E30K), it is concluded that there is as yet no substantive evidence from the behaviour of RTP mutants to support the Rm-helicase interaction model for fork arrest. In an extension of the present work on RTP.Y33N, we determined the dissociation rates of complexes formed by wild-type (wt) RTP and another RTP mutant with various terminator sequences. The functional wtRTP-TerI complex was quite stable (half-life of 182 minutes), reminiscent of the great stability of the E. coli Tus-Ter complex. More significant were the exceptional stabilities of complexes comprising wtRTP and an RTP double-mutant (E39K.R42Q) bound to some particular terminator sequences. From the measurement of in vivo fork-arrest activities of the various complexes, it is concluded that the stability (half-life) of the whole RTP-Ter complex is not the overriding determinant of arrest, and that the RTP-Ter complex must be actively disrupted, or RTP removed, by the action of the approaching replication fork. (C) 1999 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulation of protein function is vital for the control of cellular processes. Proteins are often regulated by allosteric mechanisms, in which effecters bind to regulatory sites distinct from the active sites and alter protein function. Intrasteric regulation, directed at the active site and thus the counterpart of allosteric control, is now emerging as an important regulatory mechanism.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many drugs and chemicals found in the environment are either detoxified by N-acetyltransferase 1 (NAT1, EC 2.3.1.5) and eliminated from the body or bioactivated to metabolites that have the potential to cause toxicity and/or cancer. NAT1 activity in the body is regulated by genetic polymorphisms as well as environmental factors such as substrate-dependent down-regulation and oxidative stress. Here we report the molecular mechanism for the low protein expression from mutant NAT1 alleles that gives rise to the slow acetylator phenotype and show that a similar process accounts for enzyme down-regulation by NAT1 substrates. NAT1 allozymes NAT1 14, NAT1 15, NAT1 17, and NAT1 22 are devoid of enzyme activity and have short intracellular half-lives (similar to4 h) compared with wild-type NAT1 4 and the active allozyme NAT1 24. The inactive allozymes are unable to be acetylated by cofactor, resulting in ubiquitination and rapid degradation by the 26 S proteasome. This was confirmed by site-directed mutagenesis of the active site cysteine 68. The NAT1 substrate p-aminobenzoic acid induced ubiquitination of the usually stable NAT1 4, leading to its rapid degradation. From this study, we conclude that NAT1 exists in the cell in either a stable acetylated state or an unstable non-acetylated state and that mutations in the NAT1 gene that prevent protein acetylation produce a slow acetylator phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ligand-gated ion channels of the Cys loop family are receptors for small amine-containing neurotransmitters. Charged amino acids are strongly conserved in the ligand-binding domain of these receptor proteins. To investigate the role of particular residues in ligand binding of the serotonin 5-HT3AS receptor (5-HT3R), glutamate amino acid residues at three different positions, Glu97, Glu224, and Glu235, in the extracellular N-terminal domain were substituted with aspartate and glutamine using site-directed mutagenesis. Wild type and mutant receptor proteins were expressed in HEK293 cells and analyzed by electrophysiology, radioligand binding, fluorescence measurements, and immunochemistry. A structural model of the ligand-binding domain of the 5-HT3R based on the acetylcholine binding protein revealed the position of the mutated amino acids. Our results demonstrate that mutations of Glu97, distant from the ligand-binding site, had little effect on the receptor, whereas mutations Glu224 and Glu235, close to the predicted binding site, are indeed important for ligand binding. Mutations E224Q, E224D, and E235Q decreased EC50 and Kd values 5-20-fold, whereas E235D was functionally expressed at a low level and had a more than 100-fold increased EC50 value. Comparison of the fluorescence properties of a fluorescein-labeled antagonist upon binding to wild type 5-HT3R and E235Q, allowed us to localize Glu235 within a distance of 1 nm around the ligand-binding site, as proposed by our model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic vaccines constitute the most promising tools for controlling and preventing infectious diseases. When synthetic immunogens are designed from the pathogen native sequences, these are normally poorly immunogenic and do not induce protection, as demonstrated in our research. After attempting many synthetic strategies for improving the immunogenicity properties of these sequences, the approach consisting of identifying high binding motifs present in those, and then performing specific changes on amino-acids belonging to such motifs, has proven to be a workable strategy. In addition, other strategies consisting of chemically introducing non-natural constraints to the backbone topology of the molecule and modifying the a-carbon asymmetry are becoming valuable tools to be considered in this pursuit. Non-natural structural constraints to the peptide backbone can be achieved by introducing peptide bond isosters such as reduced amides, partially retro or retro-inverso modifications or even including urea motifs. The second can be obtained by strategically replacing L-amino-acids with their enantiomeric forms for obtaining both structurally site-directed designed immunogens as potential vaccine candidates and their Ig structural molecular images, both having immunotherapeutic effects for preventing and controlling malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative contributions to the specificity and catalysis of aglycone, of residues E190, E194, K201 and M453 that form the aglycone-binding site of a beta-glycosidase from Spodoptera frugiperda (EC 3.2.1.21), were investigated through site-directed mutagenesis and enzyme kinetic experiments. The results showed that E190 favors the binding of the initial portion of alkyl-type aglycones (up to the sixth methylene group) and also the first glucose unit of oligosaccharidic aglycones, whereas a balance between interactions with E194 and K201 determines the preference for glucose units versus alkyl moieties. E194 favors the binding of alkyl moieties, whereas K201 is more relevant for the binding of glucose units, in spite of its favorable interaction with alkyl moieties. The three residues E190, E194 and K201 reduce the affinity for phenyl moieties. In addition, M453 favors the binding of the second glucose unit of oligosaccharidic aglycones and also of the initial portion of alkyl-type aglycones. None of the residues investigated interacted with the terminal portion of alkyl-type aglycones. It was also demonstrated that E190, E194, K201 and M453 similarly contribute to stabilize ES double dagger. Their interactions with aglycone are individually weaker than those formed by residues interacting with glycone, but their joint catalytic effects are similar. Finally, these interactions with aglycone do not influence glycone binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beetle luciferases emit a wide range of bioluminescence colors, ranging from green to red. Firefly luciferases can shift the spectrum to red in response to pH and temperature changes, whereas click beetle and railroadworm luciferases do not. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. Through comparative site-directed mutagenesis and modeling studies, using the pH-sensitive luciferases (Macrolampis and Cratomorphus distinctus fireflies) and the pH-insensitive luciferases (Pyrearinus termitilluminans, Phrixotrix viviani and Phrixotrix hirtus) cloned by our group, here we show that substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). The substitutions at positions 227, 228 and 229 (P. pyralis sequence) cause dramatic redshift and temporal shift in both groups of luciferases, indicating their involvement in labile interactions. Modeling studies showed that the residues Y227 and N229 are buried in the protein core, fixing the loop to other structural elements participating at the bottom of the luciferin binding site. Changes in pH and temperature (in firefly luciferases), as well as point mutations in this loop, may disrupt the interactions of these structural elements exposing the active site and modulating bioluminescence colors. © 2007 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to investigate the immunochemical nature of the polyclonal immune response to the 14mer peptide TINKEDDESPGLYG and to identify interactions among antibodies to more than one epitope. Two groups of rabbits were immunized with the 14mer peptide and a Keyhole Limpet hemocyanin (KLH) carrier, but with KLH attached either to the 14mer's N- or C-terminus. Two approximate epitopes were mapped by an antibody-capture enzyme-linked immunosorbent assay method using antiserum obtained when KLH was oriented on the C-terminus of the 14mer. A precise mapping of the epitopes performed with inhibition enzyme immunoassays (iEIAs) resulted in an N-terminal 6mer epitope TINKED and a C-terminal 10mer epitope EDDESPGLYG. The epitopes overlapped by two amino acids. IEIAs and iEIAs incorporating antibody-blocking peptides indicated that the two anti-epitope antibody fractions did not interfere with one anothers' epitope binding. It was postulated that the anti-TINKED and anti-EDDESPGLYG antibody fractions individually bind their respective hydrophobic epitope "core" region at the N- or C-terminal of peptide TINKEDDESPGLYG, while sharing the two hydrophilic overlap amino acids. This antibody "lap joint" binding interaction can be accomplished by each of the anti-epitope antibodies binding an opposite side of the epitope overlap region in the shallow periphery of its binding site. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochromes P450 are a superfamily of heme-thiolate proteins that function in a concert with another protein, cytochrome P450 reductase, as terminal oxidases of an enzymatic system catalyzing the metabolism of a variety of foreign compounds and endogenous substrates. In order to better understand P450s catalytic mechanism and substrate specificity, information about the structure of the active site is necessary. Given the lack of a crystal structure of mammalian P450, other methods have been used to elucidate the substrate recognition and binding site structure in the active center. In this project I utilized the photoaffinity labeling technique and site-directed mutagenesis approach to gain further structural insight into the active site of mammalian cytochrome P4501AI and examine the role of surface residues in the interaction of P4501A1 with the reductase. ^ Four crosslinked peptides were identified by photoaffinity labeling using diazido benzphetamine as a substrate analog. Alignment of the primary structure of cytochrome P4501A1 with that of bacterial cytochrome P450102 (the crystal structure of which is known) revealed that two of the isolated crosslinked peptides can be placed in the vicinity of heme (in the L helix region and β10-β11 sheet region of cytochrome P450102) and could be involved in substrate binding. The other two peptides were located on the surface of the protein with the label bound specifically to Lys residues that were proposed to be involved in reductase-P450 interaction. ^ Alternatively, it has been shown that some of the organic hydroperoxides can support P450 catalyzed reactions in the absence of NADPH, O2 and reductase. By means of photoaffinity labeling the cumene hydroperoxide binding region was identified. Using azidocumene as the photoaffinity label, the tripeptide T501-L502-K503 was shown to be the site where azidocumene covalently binds to P4501A1. The sequence alignment of cytochrome P4501A1 with cytochrome P450102 predicts that this region might correspond to β-sheet structure localized on the distal side of the heme ring near the I helix and the oxygen binding pocket. The role of Thr501 in the cumene hydroperoxide binding was confirmed by mutations of this residue and kinetic analysis of the effects of the mutations. ^ In addition, the role of two lysine residues, Lys271 and Lys279, in the interaction with reductase was examined by means of site-directed mutagenesis. The lysine residues were substituted with isoleucine and enzymatic activity of the wild type and the mutants were compared in reductase- and cumene hydroperoxide-supported systems. The lysine 279 residue has been shown to play a critical role in the P4501A1-reductase interaction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PsaF-deficient mutant 3bF of Chlamydomonas reinhardtii was used to modify PsaF by nuclear transformation and site-directed mutagenesis. Four lysine residues in the N-terminal domain of PsaF, which have been postulated to form the positively charged face of a putative amphipathic α-helical structure were altered to K12P, K16Q, K23Q, and K30Q. The interactions between plastocyanin (pc) or cytochrome c6 (cyt c6) and photosystem I (PSI) isolated from wild type and the different mutants were analyzed using crosslinking techniques and flash absorption spectroscopy. The K23Q change drastically affected crosslinking of pc to PSI and electron transfer from pc and cyt c6 to PSI. The corresponding second order rate constants for binding of pc and cyt c6 were reduced by a factor of 13 and 7, respectively. Smaller effects were observed for mutations K16Q and K30Q, whereas in K12P the binding was not changed relative to wild type. None of the mutations affected the half-life of the microsecond electron transfer performed within the intermolecular complex between the donors and PSI. The fact that these single amino acid changes within the N-terminal domain of PsaF have different effects on the electron transfer rate constants and dissociation constants for both electron donors suggests the existence of a rather precise recognition site for pc and cyt c6 that leads to the stabilization of the final electron transfer complex through electrostatic interactions.