937 resultados para Single Frequency Bioimpedance


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of nonlinear frequency coupling in an oxygen plasma excited by two odd harmonics at moderate pressure is investigated using a numerical model. Through variations in the voltage ratio and phase shift between the frequency components changes in ionization dynamics and sheath voltages are demonstrated. Furthermore, a regime in which the voltage drop across the plasma sheath is minimised is identified. This regime provides a significantly higher ion flux than a single frequency discharge driven by the lower of the two frequencies alone. These operating parameters have potential to be exploited for plasma processes requiring low ion bombardment energies but high ion fluxes. 

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: Malnutrition is prevalent in patients with advanced liver disease (LD) related to multifactorial causes. Fluid retention can underestimate the nutritional status based on anthropometric measures. We evaluated nutritional indicators and body composition (BC) in patients with liver cirrhosis and correlated them with LD severity. METHODS: Forty three patients with LD enrolled for liver transplantation were evaluated by Anthropometric measures, subjective evaluation (Global Assessment of Nutritional Status - SGA) and biochemical indicators. Single-frequency electrical bioimpedance (SFE-BIA) was used to evaluate body composition (BC). It measured resistance (R), reactance (Xc) and the phase angle (PA). LD severity was estimated by Child-Pugh and Meld criteria (Model for End-Stage Liver Disease). RESULTS: Child-Pugh index between patients was 7.11±1.70 and Meld was 12.23±4.22. Arm Circumference, Arm Muscle Circumference and Arm Muscle Area, SGA, hemoglobin, hematocrit and albumin showed better correlation with disease severity. Xc and PA showed correlation both with Meld and Child-Pugh score when BC were evaluated. PA was depleted in 55.8% of the patients. CONCLUSIONS: Diagnosis of malnutrition varied according to the method. Global assessment of nutritional status showed better correlation with disease severity than with objective methods. Single-frequency electrical bioimpedance for body composition analysis in cirrhotic patients must be cautiously used; however, primary vectors seems to be valid and promising in clinical practice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tuned liquid column dampers have been proved to be successful in mitigating the dynamic responses of civil infrastructure. There have been some recent applications of this concept on wind turbines and this passive control system can help to mitigate responses of offshore floating platforms and wave devices. The control of dynamic responses of these devices is important for reducing loads on structural elements and facilitating operations and maintenance (O&M) activities. This paper outlines the use of a tuned single liquid column damper for the control of a tension leg platform supported wind turbine. Theoretical studies were carried out and a scaled model was tested in a wave basin to assess the performance of the damper. The tests on the model presented in this paper correspond to a platform with a very low natural frequency for surge, sway and yaw motions. For practical purposes, it was not possible to tune the liquid damper exactly to this frequency. The consequent approach taken and the efficiency of such approach are presented in this paper. Responses to waves of a single frequency are investigated along with responses obtained from wave spectra characterising typical sea states. The extent of control is quantified using peak and root mean squared dynamic responses respectively. The tests present some guidelines and challenges for testing scaled devices in relation to including response control mechanisms. Additionally, the results provide a basis for dictating future research on tuned liquid column damper based control on floating platforms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work a novel hybrid approach is presented that uses a combination of both time domain and frequency domain solution strategies to predict the power distribution within a lossy medium loaded within a waveguide. The problem of determining the electromagnetic fields evolving within the waveguide and the lossy medium is decoupled into two components, one for computing the fields in the waveguide including a coarse representation of the medium (the exterior problem) and one for a detailed resolution of the lossy medium (the interior problem). A previously documented cell-centred Maxwell’s equations numerical solver can be used to resolve the exterior problem accurately in the time domain. Thereafter the discrete Fourier transform can be applied to the computed field data around the interface of the medium to estimate the frequency domain boundary condition in-formation that is needed for closure of the interior problem. Since only the electric fields are required to compute the power distribution generated within the lossy medium, the interior problem can be resolved efficiently using the Helmholtz equation. A consistent cell-centred finite-volume method is then used to discretise this equation on a fine mesh and the underlying large, sparse, complex matrix system is solved for the required electric field using the iterative Krylov subspace based GMRES iterative solver. It will be shown that the hybrid solution methodology works well when a single frequency is considered in the evaluation of the Helmholtz equation in a single mode waveguide. A restriction of the scheme is that the material needs to be sufficiently lossy, so that any penetrating waves in the material are absorbed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to support intelligent transportation system (ITS) road safety applications such as collision avoidance, lane departure warnings and lane keeping, Global Navigation Satellite Systems (GNSS) based vehicle positioning system has to provide lane-level (0.5 to 1 m) or even in-lane-level (0.1 to 0.3 m) accurate and reliable positioning information to vehicle users. However, current vehicle navigation systems equipped with a single frequency GPS receiver can only provide road-level accuracy at 5-10 meters. The positioning accuracy can be improved to sub-meter or higher with the augmented GNSS techniques such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP) which have been traditionally used in land surveying and or in slowly moving environment. In these techniques, GNSS corrections data generated from a local or regional or global network of GNSS ground stations are broadcast to the users via various communication data links, mostly 3G cellular networks and communication satellites. This research aimed to investigate the precise positioning system performances when operating in the high mobility environments. This involves evaluation of the performances of both RTK and PPP techniques using: i) the state-of-art dual frequency GPS receiver; and ii) low-cost single frequency GNSS receiver. Additionally, this research evaluates the effectiveness of several operational strategies in reducing the load on data communication networks due to correction data transmission, which may be problematic for the future wide-area ITS services deployment. These strategies include the use of different data transmission protocols, different correction data format standards, and correction data transmission at the less-frequent interval. A series of field experiments were designed and conducted for each research task. Firstly, the performances of RTK and PPP techniques were evaluated in both static and kinematic (highway with speed exceed 80km) experiments. RTK solutions achieved the RMS precision of 0.09 to 0.2 meter accuracy in static and 0.2 to 0.3 meter in kinematic tests, while PPP reported 0.5 to 1.5 meters in static and 1 to 1.8 meter in kinematic tests by using the RTKlib software. These RMS precision values could be further improved if the better RTK and PPP algorithms are adopted. The tests results also showed that RTK may be more suitable in the lane-level accuracy vehicle positioning. The professional grade (dual frequency) and mass-market grade (single frequency) GNSS receivers were tested for their performance using RTK in static and kinematic modes. The analysis has shown that mass-market grade receivers provide the good solution continuity, although the overall positioning accuracy is worse than the professional grade receivers. In an attempt to reduce the load on data communication network, we firstly evaluate the use of different correction data format standards, namely RTCM version 2.x and RTCM version 3.0 format. A 24 hours transmission test was conducted to compare the network throughput. The results have shown that 66% of network throughput reduction can be achieved by using the newer RTCM version 3.0, comparing to the older RTCM version 2.x format. Secondly, experiments were conducted to examine the use of two data transmission protocols, TCP and UDP, for correction data transmission through the Telstra 3G cellular network. The performance of each transmission method was analysed in terms of packet transmission latency, packet dropout, packet throughput, packet retransmission rate etc. The overall network throughput and latency of UDP data transmission are 76.5% and 83.6% of TCP data transmission, while the overall accuracy of positioning solutions remains in the same level. Additionally, due to the nature of UDP transmission, it is also found that 0.17% of UDP packets were lost during the kinematic tests, but this loss doesn't lead to significant reduction of the quality of positioning results. The experimental results from the static and the kinematic field tests have also shown that the mobile network communication may be blocked for a couple of seconds, but the positioning solutions can be kept at the required accuracy level by setting of the Age of Differential. Finally, we investigate the effects of using less-frequent correction data (transmitted at 1, 5, 10, 15, 20, 30 and 60 seconds interval) on the precise positioning system. As the time interval increasing, the percentage of ambiguity fixed solutions gradually decreases, while the positioning error increases from 0.1 to 0.5 meter. The results showed the position accuracy could still be kept at the in-lane-level (0.1 to 0.3 m) when using up to 20 seconds interval correction data transmission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The elastic properties of 1D nanostructures such as nanowires are often measured experimentally through actuation of the nanowire at its resonance frequency, and then relating the resonance frequency to the elastic stiffness using elementary beam theory. In the present work, we utilize large scale molecular dynamics simulations to report a novel beat phenomenon in [110]oriented Ag nanowires. The beat phenomenon is found to arise from the asymmetry of the lattice spacing in the orthogonal elementary directions of the [110] nanowire, i.e. the [-110] and [001] directions, which results in two different principal moments of inertia. Because of this, actuations imposed along any other direction are found to decompose into two orthogonal vibrational components based on the actuation angle relative to these two elementary directions, with this phenomenon being generalizable to <110> FCC nanowires of different materials (Cu, Au, Ni, Pd and Pt). The beat phenomenon is explained using a discrete moment of inertia model based on the hard sphere assumption, the model is utilized to show that surface effects enhance the beat phenomenon, while the effect is reduced with increasing nanowires cross-sectional size or aspect ratio. Most importantly, due to the existence of the beat phenomena, we demonstrate that in resonance experiments only a single frequency component is expected to be observed, particularly when the damping ratio is relatively large or very small. Furthermore, for a large range of actuation angles, the lower frequency is more likely to be detected than the higher one, which implies that experimental predictions of Young’s modulus obtained from resonance may in fact be under predictions. The present study therefore has significant implications for experimental interpretations of Young’s modulus as obtained via resonance testing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, an integrated inter-vehicles wireless communications and positioning system supporting alternate positioning techniques is proposed to meet the requirements of safety applications of Cooperative Intelligent Transportation Systems (C-ITS). Recent advances have repeatedly demonstrated that road safety problems can be to a large extent addressed via a range of technologies including wireless communications and positioning in vehicular environments. The novel communication stack utilizing a dedicated frequency spectrum (e.g. at 5.9 GHz band), known as Dedicated Short-Range Communications (DSRC), has been particularly designed for Wireless Access in Vehicular Environments (WAVE) to support safety applications in highly dynamic environments. Global Navigation Satellite Systems (GNSS) is another essential enabler to support safety on rail and roads. Although current vehicle navigation systems such as single frequency Global Positioning System (GPS) receivers can provide route guidance with 5-10 meters (road-level) position accuracy, positioning systems utilized in C-ITS must provide position solutions with lane-level and even in-lane-level accuracies based on the requirements of safety applications. This article reviews the issues and technical approaches that are involved in designing a vehicular safety communications and positioning architecture; it also provides technological solutions to further improve vehicular safety by integrating the DSRC and GNSS-based positioning technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the question of determining locations of base stations (BSs) that may belong to the same or to competing service providers. We take into account the impact of these decisions on the behavior of intelligent mobile terminals that can connect to the base station that offers the best utility. The signal-to-interference-plus-noise ratio (SINR) is used as the quantity that determines the association. We first study the SINR association-game: We determine the cells corresponding to each base stations, i.e., the locations at which mobile terminals prefer to connect to a given base station than to others. We make some surprising observations: 1) displacing a base station a little in one direction may result in a displacement of the boundary of the corresponding cell to the opposite direction; 2) a cell corresponding to a BS may be the union of disconnected subcells. We then study the hierarchical equilibrium in the combined BS location and mobile association problem: We determine where to locate the BSs so as to maximize the revenues obtained at the induced SINR mobile association game. We consider the cases of single frequency band and two frequency bands of operation. Finally, we also consider hierarchical equilibria in two frequency systems with successive interference cancellation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We know from the CMB and observations of large-scale structure that the universe is extremely flat, homogenous, and isotropic. The current favored mechanism for generating these characteristics is inflation, a theorized period of exponential expansion of the universe that occurred shortly after the Big Bang. Most theories of inflation generically predict a background of stochastic gravitational waves. These gravitational waves should leave their unique imprint on the polarization of the CMB via Thompson scattering. Scalar perturbations of the metric will cause a pattern of polarization with no curl (E-mode). Tensor perturbations (gravitational waves) will cause a unique pattern of polarization on the CMB that includes a curl component (B-mode). A measurement of the ratio of the tensor to scalar perturbations (r) tells us the energy scale of inflation. Recent measurements by the BICEP2 team detect the B-mode spectrum with a tensor-to-scalar ratio of r = 0.2 (+0.05, −0.07). An independent confirmation of this result is the next step towards understanding the inflationary universe.

This thesis describes my work on a balloon-borne polarimeter called SPIDER, which is designed to illuminate the physics of the early universe through measurements of the cosmic microwave background polarization. SPIDER consists of six single-frequency, on-axis refracting telescopes contained in a shared-vacuum liquid-helium cryostat. Its large format arrays of millimeter-wave detectors and tight control of systematics will give it unprecedented sensitivity. This thesis describes how the SPIDER detectors are characterized and calibrated for flight, as well as how the systematics requirements for the SPIDER system are simulated and measured.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis describes a series of experimental, numerical, and analytical studies involving the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes system. The jet is collimated and accelerated by the MHD forces.

We present three-dimensional ideal MHD finite-volume simulations of the plasma jet experiment using an astrophysical magnetic tower as the baseline model. A compact magnetic energy/helicity injection is exploited in the simulation analogous to both the experiment and to astrophysical situations. Detailed analysis provides a comprehensive description of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms.

When the experimental jet is sufficiently long, it undergoes a global kink instability and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface.

In the experiment, this instability cascade from macro-scale to micro-scale eventually leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe and successfully detected the high frequency magnetic fluctuations of broadband whistler waves associated with the fast reconnection. The magnetic fluctuations exhibit power-law spectra. The magnetic components of single-frequency whistler waves are found to be circularly polarized regardless of the angle between the wave propagation direction and the background magnetic field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission. (c) 2007 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

用蒙特卡罗方法仿真了增益随机散射体中的非相干辐射,观察了非相干随机激光的特性。当抽运能量超过一定阈值时,散射体的整体辐射谱突然变窄;随着抽运能量继续增大,在光滑谱背景上会出现分离尖峰;散射体内空间某位置处频率组成不是单一的;辐射谱中某单个频率的空间方向分布和位置分布比较广。增益随机散射体中产生的非相干随机激光本质上既不同于无反馈的普通放大自发辐射,又不同于相干反馈形成的常规激光。解释了非相干随机激光辐射谱上出现分离尖峰的原因,出现这种现象是由于少数光子在增益散射体中经历较多次数散射后得到了相对充分的放大。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

设计一套测量大气风场的多普勒激光雷达系统,以种子注入的单频、高重频、脉冲紫外全固态激光器为发射光源,采用两种直接探测技术获取高低空大气风场。基于费索干涉仪(Fizeau)的条纹图像技术获取边界层和低对流层大气风场,基于双法布里珀罗干涉仪(DFP)的双边缘检测技术获取高对流层和低平流层风场。研制的单频全固态激光器输出100 Hz、30 mJ的单纵模脉冲激光,输出线宽达到傅里叶转换极限。报道了测量原理和数值模拟结果、实验样机和系统技术参数。系统将用于移动式高低空大气风场测量。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

采用Pound-Drever-Hall技术,对用于多普勒测风雷达的种子注入激光器的主动激光器进行稳频,将其频率锁定在一个特殊设计的法珀腔上。该法珀腔总体采用零膨胀微晶玻璃材料制成,具有极高的温度稳定性。使用计算机采集鉴频信号并且进行处理。锁定后,1秒内激光器的相对频率漂移为±25kHz,一小时内的相对频率漂移为±55kHz,满足多普勒测风雷达的要求。