997 resultados para Simulated experiment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This experiment evaluated temperament, vaginal temperature, and plasma cortisol in beef cows from wolf-naive and wolf-experienced origins that were subjected to a simulated wolf encounter. Multiparous, pregnant, nonlactating Angus-crossbreed cows from the Eastern Oregon Agricultural Research Center located near Burns, OR (CON; n = 50), and from a commercial operation near Council, ID (WLF; n = 50), were used. To date, grey wolves are not present around Burns, OR, and thus CON were naive to wolves. Conversely, wolves are present around Council, ID, and WLF cows were selected from a herd that had experienced multiple confirmed wolf-predation episodes from 2008 to 2012. Following a 50-d commingling and adaptation period, CON and WLF cows were ranked by temperament, BW, and BCS and allocated to 5 groups (d 0; 10 CON and 10 WLF cows/group). Groups were individually subjected to the experimental procedures on d 2 (n = 3) and d 3 (n = 2). Before the simulated wolf encounter, cow temperament was assessed and blood samples and vaginal temperatures (using intravaginal data loggers) were collected (presimulation assessments). Cows were then sorted by origin, moved to 2 adjacent drylot pens (10 WLF and 10 CON cows/pen), and subjected to a simulated wolf encounter event for 20 min, which consisted of 1) cotton plugs saturated with wolf urine attached to the drylot fence, 2) continuous reproduction of wolf howls, and 3) 3 leashed dogs that were walked along the fence perimeter. Thereafter, WLF and CON cows were commingled and returned to the handling facility for postsimulation assessments, which were conducted immediately after exposure to wolf-urine-saturated cotton plugs, wolf howl reproduction, and 20-s exposure to the 3 dogs while being restrained in a squeeze chute. Chute score, temperament score, and plasma cortisol concentration increased (P <= 0.01) from pre- to postsimulation assessment in WLF but did not change in CON cows (P >= 0.19). Exit velocity decreased (P = 0.01) from pre-to postsimulation assessment in CON but did not change (P = 0.79) in WLF cows. In addition, WLF cows had a greater (P = 0.03) increase in temperature from pre-to postsimulation assessments compared with CON cows. In conclusion, the simulated wolf encounter increased excitability and fear-related physiological stress responses in cows that originated from a wolf-experienced herd but not in cows that originated from a wolf-naive herd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hemianopic patients make a systematic error in line bisection, showing a contra-lesional bias towards their blind side, which is the opposite of that in hemineglect patients. This error has been attributed variously to the visual field defect, to long-term strategic adaptation, or to independent effects of damage to extrastriate cortex. To determine if hemianopic bisection error can occur without the latter two factors, we studied line bisection in healthy subjects with simulated homonymous hemianopia using a gaze-contingent display, with different line-lengths, and with or without markers at both ends of the lines. Simulated homonymous hemianopia did induce a contra-lesional bisection error and this was associated with increased fixations towards the blind field. This error was found with end-marked lines and was greater with very long lines. In a second experiment we showed that eccentric fixation alone produces a similar bisection error and eliminates the effect of line-end markers. We conclude that a homonymous hemianopic field defect alone is sufficient to induce both a contra-lesional line bisection error and previously described alterations in fixation distribution, and does not require long-term adaptation or extrastriate damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Biodiversity-ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively. 2. We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25.8x25.8m each. 3. The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial ecoscape' to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios. 4. Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions. 5. We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achieving specific research goals and synergy with previous experiments involves trade-offs between different designs and requires manifold design decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accuracy of Global Positioning System (GPS) time series is degraded by the presence of offsets. To assess the effectiveness of methods that detect and remove these offsets, we designed and managed the Detection of Offsets in GPS Experiment. We simulated time series that mimicked realistic GPS data consisting of a velocity component, offsets, white and flicker noises (1/f spectrum noises) composed in an additive model. The data set was made available to the GPS analysis community without revealing the offsets, and several groups conducted blind tests with a range of detection approaches. The results show that, at present, manual methods (where offsets are hand picked) almost always give better results than automated or semi‒automated methods (two automated methods give quite similar velocity bias as the best manual solutions). For instance, the fifth percentile range (5% to 95%) in velocity bias for automated approaches is equal to 4.2 mm/year (most commonly ±0.4 mm/yr from the truth), whereas it is equal to 1.8 mm/yr for the manual solutions (most commonly 0.2 mm/yr from the truth). The magnitude of offsets detectable by manual solutions is smaller than for automated solutions, with the smallest detectable offset for the best manual and automatic solutions equal to 5 mm and 8 mm, respectively. Assuming the simulated time series noise levels are representative of real GPS time series, robust geophysical interpretation of individual site velocities lower than 0.2–0.4 mm/yr is therefore certainly not robust, although a limit of nearer 1 mm/yr would be a more conservative choice. Further work to improve offset detection in GPS coordinates time series is required before we can routinely interpret sub‒mm/yr velocities for single GPS stations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

User comfort during simulated driving is of key importance, since reduced comfort can confound the experiment and increase dropout rates. A common comfort-affecting factor is simulator-related transient adverse health effect (SHE). In this study, we propose and evaluate methods to adapt a virtual driving scene to reduce SHEs. In contrast to the manufacturer-provided high-sensory conflict scene (high-SCS), we developed a low-sensory conflict scene (low-SCS). Twenty young, healthy participants drove in both the high-SCS and the low-SCS scene for 10 min on two different days (same time of day, randomized order). Before and after driving, participants rated SHEs by completing the Simulator Sickness Questionnaire (SSQ). During driving, several physiological parameters were recorded. After driving in the high-SCS, the SSQ score increased in average by 129.4 (122.9 %, p = 0.002) compared to an increase of 5.0 (3.4 %, p = 0.878) after driving in the low-SCS. In the low-SCS, skin conductance decreased by 13.8 % (p < 0.01) and saccade amplitudes increased by 16.1 % (p < 0.01). Results show that the investigated methods reduce SHEs in a younger population, and the low-SCS is well accepted by the users. We expect that these measures will improve user comfort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic diversity of baltic F. vesiculosus is low compared to other populations which might jeopardize their potential for adaptation to climate change. Especially the early life-stage F. vesiculosus may be threaten by ocean warming and acidification. To test this, we exposed F. vesiculosus germlings to warming and acidification in the near-natural scenario in the "Kiel Outdoor Benthocosms" maintaining the natural variation of the Kiel Fjord, Germany (54°27 'N, 10°11 'W) in all seasons (spring 2013 - 2014). Warming was simulated by using a delta treatment adding 5 °C and by increasing pCO2 at 1000 µatm. Warming positively affected germlings' growth in spring and in summer but decreased non-photochemical quenching in spring and survival in summer. Acidified conditions showed much weaker effects than warming. The high genotypic variation in stress sensitivity as well as the enhanced survival at high diversity levels indicate higher potential for adaptation for genetically diverse populations. We conclude that the combination of stressors and season determines the sensitivity to environmental stress and that genetic variation is crucial for the adaptation to climate change stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 µatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Residual structure in the denatured state of a protein may contain clues about the early events in folding. We have simulated by molecular dynamics the denatured state of barnase, which has been studied by NMR spectroscopy. An ensemble of 104 structures was generated after 2 ns of unfolding and following for a further 2 ns. The ensemble was heterogeneous, but there was nonrandom, residual structure with persistent interactions. Helical structure in the C-terminal portion of helix α1 (residues 13–17) and in helix α2 as well as a turn and nonnative hydrophobic clustering between β3 and β4 were observed, consistent with NMR data. In addition, there were tertiary contacts between residues in α1 and the C-terminal portion of the β-sheet. The simulated structures allow the rudimentary NMR data to be fleshed out. The consistency between simulation and experiment inspires confidence in the methods. A description of the folding pathway of barnase from the denatured to the native state can be constructed by combining the simulation with experimental data from φ value analysis and NMR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short-term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry-over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this manuscript we describe the experimental procedure employed at the Alfred Wegener Institute in Germany in the preparation of the simulations for the Pliocene Model Intercomparison Project (PlioMIP). We present a description of the utilized Community Earth System Models (COSMOS, version: COSMOS-landveg r2413, 2009) and document the procedures that we applied to transfer the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project mid-Pliocene reconstruction into model forcing fields. The model setup and spin-up procedure are described for both the paleo- and preindustrial (PI) time slices of PlioMIP experiments 1 and 2, and general results that depict the performance of our model setup for mid-Pliocene conditions are presented. The mid-Pliocene, as simulated with our COSMOS setup and PRISM boundary conditions, is both warmer and wetter in the global mean than the PI. The globally averaged annual mean surface air temperature in the mid-Pliocene standalone atmosphere (fully coupled atmosphere-ocean) simulation is 17.35 °C (17.82 °C), which implies a warming of 2.23 °C (3.40 °C) relative to the respective PI control simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A longitudinal field experiment examined a leader self-regulation intervention in teams engaged in a Business Strategy Module (BSM) of a University course. The BSM, which is an integral part of the degree programme, involved teams of four or five individuals, under the direction of a leader, working on a (simulated) car manufacturing task over a period of 24. weeks. Various aspects of team performance contributed towards module assessment. All leaders received multi-source feedback of leader task-relevant capabilities (from the leader, followers and module tutor). Leaders were randomly allocated into a self-regulation intervention (15 leaders, 46 followers) or control (25 leaders, 109 followers) conditions. The intervention, which was run by an independent coach, was designed to improve leaders' use of self-regulatory processes to aid the development of task-relevant leadership competencies. Survey data was collected from the leaders and followers (on three occasions: pre- and two post-test intervention), team financial performance (three occasions: post-test) and a final team report (post-test). The leader self-regulation intervention led to increased followers' ratings of leader's effectiveness, higher team financial performance and higher final team grade compared to the control (non-intervention) condition. Furthermore, the benefits of the self-regulation intervention were mediated by leaders' attaining task-relevant competencies. © 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate warming is predicted to cause an increase in the growing season by as much as 30% for regions of the arctic tundra. This will have a significant effect on the physiological activity of the vascular plant species and the ecosystem as a whole. The need to understand the possible physiological change within this ecosystem is confounded by the fact that research in this extreme environment has been limited to periods when conditions are most favorable, mid June–mid August. This study attempted to develop the most comprehensive understanding to date of the physiological activity of seven tundra plant species in the Alaskan Arctic under natural and lengthened growing season conditions. Four interrelated lines of research, scaling from cellular signals to ecosystem processes, set the foundation for this study. ^ I established an experiment looking at the physiological response of arctic sedges to soil temperature stress with emphasis on the role of the hormone abscisic acid (ABA). A manipulation was also developed where the growing season was lengthened and soils were warmed in an attempt to determine the maximum physiological capacity of these seven vascular species. Additionally, the physiological capacities of four evergreens were tested in the subnivean environment along with the potential role anthocyanins play in their activity. The measurements were scaled up to determine the physiological role of these evergreens in maintaining ecosystem carbon fluxes. ^ These studies determined that soil temperature differentials significantly affect vascular plant physiology. ABA appears to be a physiological modifier that limits stomatal processes when root temperatures are low. Photosynthetic capacity was limited by internal plant physiological mechanisms in the face of a lengthened growing season. Therefore shifts in ecosystem carbon dynamics are driven by changes in species composition and biomass production on a per/unit area basis. These studies also found that changes in soil temperatures will have a greater effect of physiological processes than would the same magnitude of change in air temperature. The subnivean environment exhibits conditions that are favorable for photosynthetic activity in evergreen species. These measurements when scaled to the ecosystem have a significant role in limiting the system's carbon source capacity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of resource supply and herbivory in driving competitive interactions among species has been an important but contentious issue within ecology. These variables exhibit different effects on species competition when manipulated in isolation but interact when manipulated together. I tested the direct and interactive effects of nutrient addition and simulated grazing (clipping) on the competitive performance of primary producers and community structure of a seagrass bed in South Florida. One square meter experimental plots were established in a mixed seagrass meadow from August 2007 to July 2009. The experiment was a 3 x 3 factorial experiment: 3 fertility treatments: control, medium (2.4 mg N d−1 and 80 µg P day −1) and high (4.8 mg N d−1 and 160 µg P day−1) x 3 clipping intensities (0, 25% and 50 % biomass removal (G)) x 5 replicates for each treatment = 45 plots). Nutrient additions and simulated grazing were done every two months. Fertilization and simulated grazing decreased sexual reproduction in S. filiforme. Fertilization increased competitive dominance within the primary producers while simulated grazing counteracted this effect by removal of the dominant species. Fertilization ameliorated the negative impacts of simulated grazing while simulated grazing prevented competitive exclusion in the fertilized plots. Nutrient addition and simulated grazing both exerted strong control on plant performance and community structure. Neither bottom up nor top down influences was eliminated in treatments where both factors where present. The effects of fertilization on plant performance were marked under all clipping intensities indicating that the system is regulated by nutrient availability both in the presence or absence of grazers. Clipping effects were strong under both fertilized and unfertilized conditions indicating that the seagrass bed can be simultaneously under top-down control by grazers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Culturing experiments were performed with the benthic foraminifer Ammonia aomoriensis from Flensburg Fjord, western Baltic Sea. The experiments simulated a projected rise in atmospheric CO2 concentrations. We exposed specimens to 5 seawater pCO2 levels ranging from 618 µatm (pH 7.9) to 3130 µatm (pH 7.2) for 6 wk. Growth rates and mortality differed significantly among pCO2 treatments. The highest increase of mean test diameter (19%) was observed at 618 µatm. At partial pressures >1829 µatm, the mean test diameter was observed to decrease, by up to 22% at 3130 µatm. At pCO2 levels of 618 and 751 µatm, A. aomoriensis tests were found intact after the experiment. The outer chambers of specimens incubated at 929 and 1829 µatm were severely damaged by corrosion. Visual inspection of specimens incubated at 3130 µatm revealed wall dissolution of all outer chambers, only their inner organic lining stayed intact. Our results demonstrate that pCO2 values of >=929 µatm in Baltic Sea waters cause reduced growth of A. aomoriensis and lead to shell dissolution. The bottom waters in Flensburg Fjord and adjacent areas regularly experience pCO2 levels in this range during summer and fall. Increasing atmospheric CO2 concentrations are likely to extend and intensify these periods of undersaturation. This may eventually slow down calcification in A. aomoriensis to the extent that net carbonate precipitation terminates. The possible disappearance of this species from the Baltic Sea and other areas prone to seasonal undersaturation would likely cause significant shifts in shallow-water benthic ecosystems in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgements Anna Nowakowska is supported by an ESRC doctoral studentship. A James S McDonnell scholar award to Amelia R. Hunt also provided financial support. We are grateful to Edvinas Pilipavicius and Juraj Sikra for data collection. We also wish to thank W. Joseph MacInnes for help with programming the experiment and Paul Hibbard for help with filtering the faces.