966 resultados para Silica sonogels - Structural property
Resumo:
A nonisothermal study of the kinetics of the nanoporosity elimination in monolithic silica xerogels, prepared from acid and ultrasound catalyzed hydrolysis of tetraethylortosilicate (TEOS), has been carried out by means of in situ linear shrinkage measurements performed with different heating rates. The study could be applied up to almost alpha similar to 0.6 of the volume fraction alpha of eliminated pores. The activation energy was found increasing from about 3.2 x 10(2) kJ/mol for alpha similar to 0.06 up to about 4.4 x 10(2) kJ/mol for alpha. similar to 0.44. The sintering process accompanying the nanopore elimination in this set of xerogels is in agreement with a viscous flux sintering process with the hydroxyl content diminishing with the volume fraction of eliminated pores. All the volume fraction of eliminated pores versus temperature (T) curves can be matched onto a unique curve with an appropriate rescaling of the T axis, independent of the heating rate. This scaling property suggests that the path of sintering seems the same, regardless of the heating rate; the difference is that the rate is faster at higher temperature.
Resumo:
The structural evolution on the drying of wet sonogels of silica with the liquid phase exchanged by acetone, obtained from tetraethoxisilane sonohydrolysis, was studied in situ by small-angle x-ray scattering (SAXS). The periods associated to the structural evolution as determined by SAXS are in agreement with those classical ones established on basis of the features of the evaporation rate of the liquid phase in the obtaining of xerogels. The wet gel can be described as formed by primary particles (microclusters), with characteristic length a ∼ 0.67 nm and surface which is fractal, linking together to form mass fractal structures with mass fractal dimension D=2.24 in a length scale ξ∼6.7 nm. As the network collapses while the liquid/vapor meniscus is kept out of the gel volume, the mass fractal structure becomes more compacted by increasing D and decreasing ξ, with smoothing of the fractal surface of the microclusters. The time evolution of the density of the wet gels was evaluated exclusively from the SAXS parameters ξ, D, and a. The final dried acetone-exchanged gel presents Porod's inhomogeneity length of about 2.8 nm and apparently exhibits an interesting singularity D →3, as determined by the mass fractal modeling used to fit the SAXS intensity data for the obtaining of the parameters ξ and D.
Resumo:
Three porous amorphous silica minerals, including diatomite, opal and porous precipitated SiO2wereadopted to prepare supported TiO2catalysts by hydrolysis–deposition method. The prepared compoundmaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fouriertransform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Through morphology and physical chemistry properties of the resultingTiO2/amorphous SiO2catalysts, it was proposed that the nature of silica supports could affect the particlesize and the crystal form of TiO2and then further influence the photocatalytic property of TiO2/amorphousSiO2catalysts. The catalytic properties of these porous amorphous silica supported photocatalysts(TiO2/SiO2) were investigated by UV-assisted degradation of Rhodamine B (RhB). Compared with pureTiO2(P25) and the other two TiO2/amorphous SiO2catalysts, TiO2/diatomite photocatalyst exhibits bet-ter catalytic performance at different calcined temperatures, the decoloration rate of which can be upto over 85% even at a relatively low calcined temperature. The TiO2/diatomite photocatalyst possessesmixed-phase TiO2with relatively smaller particles size, which might be responsible for higher photo-catalytic activity. Moreover, the stable and much inerter porous microstructure of diatomite could beanother key factor in improving its activity.
Resumo:
Thermal conductivities of glasses at low temperatures show strikingly similar behavior irrespective of their chemical composition. While for T<1 K the thermal conductivity can be understood in the phenomenological tunneling model; the ‘‘universal plateau’’ in the temperature interval 15>T>2 K is totally unexplained. While Rayleigh scattering of phonons by structural disorder should be the natural cause for limiting the mean free path of phonons in this temperature range, it has been concluded before that in glasses a strong enough source of such scattering does not exist. In this study we show by a proper structural analysis in at least one material (namely, silica) that a strong enough source of Rayleigh scattering of phonons in glasses does exist so that the ‘‘universal plateau’’ can be explained without invoking any new mechanism. This may be for the first time that the low-temperature property of a structural glass has been correlated to its structure.
Resumo:
The structural evolution and property changes in Nd60Al10Fe20Co10 bulk metallic glass (BMG) upon crystallization are investigated by the ultrasonic method, x-ray diffraction, density measurement, and differential scanning calorimetry. The elastic constants and Debye temperature of the BMG are obtained as a function of annealing temperature. Anomalous changes in ultrasonic velocities, elastic constants, and density are observed between 600–750 K, corresponding to the formation of metastable phases as an intermediate product in the crystallization process. The changes in acoustic velocities, elastic constants, density, and Debye temperature of the BMG relative to its fully crystallized state are much smaller, compared with those of other known BMGs, the differences being attributed to the microstructural feature of the BMG.
Resumo:
Sheet resistance of laser-irradiated Ge2Sb2Te5 thin films prepared by magnetron sputtering was measured by the four-point probe method. With increasing laser power the sheet resistance undergoes an abrupt drop from 10(7) to 10(3) Omega/square at about 580 mW. The abrupt drop in resistance is due to the structural change from amorphous to crystalline state as revealed by X-ray diffraction (XRD) study of the samples around the abrupt change point. Crystallized dots were also formed in the amorphous Ge2Sb2Te5 films by focused short pulse laser-irradiated, the resistivities at the crystallized dots and the non-crystallized area are 3.375 x 10(-3) and 2.725 Omega m, sheet resistance is 3.37 x 10(4) and 2.725 x 10(7) Omega/square respectively, deduced from the I-V Curves that is obtained by conductive atomic force microscope (C-AFM). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new-type Mg2Si composite was prepared with Mg-9Al-1Zn (AZ91) alloy and vermiculite as raw materials by melt infiltration method. The results show that the microstructure of composite consists of a large amount Of Mg2Si precipitates and a little amount of MgO embedded in alpha-Mg matrix. The Vickers hardness of the composite is obviously higher than that of matrix of AZ91 alloy. Moreover, the composite exhibits excellent compressive property. The ultimate compressive strength of the material is 290 MPa, the yield strength is 175 MPa, and the elongation is about 5%, which are higher than those of AZ91 alloy.
Resumo:
Plasticized poly(L-lactide)-silica nanocomposite materials have been successfully synthesized by sol-gel process. The resultant nanocomposites were characterized by infrared spectra (IR), X-ray diffraction (XRD), thermogravimetry (TG), Tensile testing and scanning electron microscope (SEM). IR measurements show that vibration of C-O-C group is confined by silica network. Also the crystallization of poly (L-lactide) is partly confined by silica network. The presence of even small amount of silica largely improves the tensile strength of the samples, TGA results reveal that the thermal stability of samples is improved with silica loading.
Resumo:
New series of oxides, La3MMo2O12 (M = In, Ga and Al), have been prepared by the solid-state reaction. The composition and elemental distribution were analyzed by the energy-dispersive X-ray (EDX) analysis. As determined by the X-ray diffraction (XRD), these compounds have similar crystal structures that can be indexed on a monoclinic cell at room temperature. AC impedance spectra and the DC electrical conductivity measurements in various atmospheres indicate that they are oxide ion conductors with ionic conductivities between 10(-2) and 10(-3) S/cm at 800 degrees C. The conductivity decreases in the order of La3GaMo2O12 > La3AlMo2O12 > La3InMo2O12, implying that the effect of cell volume and polarization associated with In3+, Ga3+ and Al3+ play an important role in the anion transport of these materials. The reversible phase transition was observed in all these compounds as confirmed by the differential thermal analysis (DTA) and dilatometric measurements.
Resumo:
Rice husk silica was utilized as the promoter of ceria for preparing supported vanadia catalysts. Effect of vanadium content was investigated with 2–10 wt.% V2O5 loading over the support. Structural characterization of the catalysts was done by various techniques like energy dispersive X-ray (EDX), X-ray diffraction (XRD), BET surface area, thermal analysis (TGA/DTA), FT-infrared spectroscopy (FT-IR), UV–vis diffused reflectance spectroscopy (DR UV–vis), electron paramagnetic spectroscopy (EPR) and solid state magnetic resonance spectroscopies (29Si and 51V MASNMR). Catalytic activity was studied towards liquid-phase oxidation of benzene. Surface area of ceria enhanced upon rice husk silica promotion, thus makes dispersion of the active sites of vanadia easier. Highly dispersed vanadia was found for low V2O5 loading and formation of cerium orthovanadate (CeVO4) occurs as the loading increases. Spectroscopic investigation clearly confirms the formation of CeVO4 phase at higher loadings of V2O5. The oxidation activity increases with vanadia loading up to 8 wt.% V2O5, and further increase reduces the conversion rate. Selective formation of phenol can be attributed to the presence of highly dispersed active sites of vanadia over the support.
Resumo:
The temperature dependent mixing of organic and fluorous phases is one of the key principals of fluorous biphasic systems (FBS). Given the high cost of the perfluorous solvents and their impacts to the environment, it is apparent that elimination of these solvents in bulk quantity in the FBS is advantageous. We report for the first time, the surface coverage of silica with a fluorous solvent like material that traps (at ambient temperatures) and releases (at elevated temperatures) a fluorous tin bromide in organic solvent. Here, we demonstrate the catalytic utilisation of this species for the hydrocyclisation of 6-bromo-1-hexene with NaBH4. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The synthesis of FDU-1 silica with large cage-like mesopores prepared with a new triblock copolymer Vorasurf 504 (R) (Eo)(38)(BO)(46)(EO)(38) was developed. The hydrothermal treatment temperature, the dissolution of the copolymer in ethanol, the HCl concentration, the solution stirring time and the hydrothermal treatment time in a microwave oven were evaluated with factorial design procedures. The dissolution in ethanol is important to produce a material with better porous morphology. Increases in the hydrothermal temperature (100 degrees C) and HCl concentration (2 M) improved structural, textural and chemical properties of the cubic ordered mesoporous silica. Also, longer times induced better physical and chemical property characteristics. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The structural evolution in silica sols prepared from tetraethoxysilane (TEOS) sonohydrolysis was studied 'in situ' using small-angle x-ray scattering (SAXS). The structure of the gelling system can be reasonably well described by a correlation function given by gamma(r) similar to (1/R(2))(1/r) exp(- r/xi), where xi is the structure correlation length and R is a chain persistence length, as an analogy to the Ornstein-Zernike theory in describing critical phenomenon. This approach is also expected for the scattering from some linear and branched molecules as polydisperse coils of linear chains and random f-functional branched polycondensates. The characteristic length. grows following an approximate power law with time t as xi similar to t(1) (with the exponent quite close to 1) while R remains undetermined but with a constant value, except at the beginning of the process in which the growth of. is slower and R increases by only about 15% with respect to the value of the initial sol. The structural evolution with time is compatible with an aggregation process by a phase separation by coarsening. The mechanism of growth seems to be faster than those typically observed for pure diffusion controlled cluster-cluster aggregation. This suggests that physical forces (hydrothermal forces) could be actuating together with diffusion in the gelling process of this system. The data apparently do not support a spinodal decomposition mechanism, at least when starting from the initial stable acid sol studied here.