993 resultados para Signalling networks
Resumo:
A dynamic bandwidth reservation (DBR) scheme for hybrid IEEE 802.16 wireless networks is investigated, in which 802.16 networks serve as the backhaul for client networks, such as WiFi hotspots and cellular networks. The DBR scheme implemented in the subscription stations (SSs) (co-locating with access pointers) consists of two components: connection admission controller (CAC), and bandwidth controller (BC). The CAC processes the received connection set-up requests from the client networks connected to the SSs. The BC manages the request and release of bandwidth from the base station (BS). It dynamically changes the reserved bandwidth between a small number of values. Hysteresis is incorporated in bandwidth release to reduce bandwidth request signalling load and connection blocking probability. An analytical model is proposed to evaluate the performances of reserved bandwidth, connection blocking probability and signalling load. The impacts of hysteresis mechanism and probability of reservation request blocking are taken into account. Simulation verifies the analytical model. ©2008 IEEE.
Resumo:
There is currently great scientific and medical interest in the potential of tissue grown from stem cells. These cells present opportunities for generating model systems for drug screening and toxicological testing which would be expected to be more relevant to human outcomes than animal based tissue preparations. Newly realised astrocytic roles in the brain have fundamental implications within the context of stem cell derived neuronal networks. If the aim of stem cell neuroscience is to generate functional neuronal networks that behave as networks do in the brain, then it becomes clear that we must include and understand all the cellular components that comprise that network, and which are important to support synaptic integrity and cell to cell signalling. We have shown that stem cell derived neurons exhibit spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling (1). Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, astrocytes exhibit morphology and functional properties consistent with this glial cell type. Astrocytes also respond to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. Astroctyes also generate propagating calcium waves that are gap junction and purinergic signalling dependent. Our results show that stem cell derived astrocytes exhibit appropriate functionality and that stem cell neuronal networks interact with astrocytic networks in co-culture. Using mixed cultures of stem cell derived neurons and astrocytes, we have also shown both cell types also modulate their glucose uptake, glycogen turnover and lactate production in response to glutamate as well as increased neuronal activity (2). This finding is consistent with their neuron-astrocyte metabolic coupling thus demonstrating a tractable human model, which will facilitate the study of the metabolic coupling between neurons and astrocytes and its relationship with CNS functional issues ranging from plasticity to neurodegeneration. Indeed, cultures treated with oligomers of amyloid beta 1-42 (Aβ1-42) also display a clear hypometabolism, particularly with regard to utilization of substrates such as glucose (3). Both co-cultures of neurons and astrocytes and purified cultures of astrocytes showed a significant decrease in glucose uptake after treatment with 2 and 0.2 μmol/L Aβ at all time points investigated (p <0.01). In addition, a significant increase in the glycogen content of cells was also measured. Mixed neuron and astrocyte co-cultures as well as pure astrocyte cultures showed an initial decrease in glycogen levels at 6 hours compared with control at 0.2 μmol/L and 2 μmol/L P <0.01. These changes were accompanied by changes in NAD+/NADH (P<0.05), ATP (P<0.05), and glutathione levels (P<0.05), suggesting a disruption in the energy-redox axis within these cultures. The high energy demands associated with neuronal functions such as memory formation and protection from oxidative stress put these cells at particular risk from Aβ-induced hypometabolism. As numerous cell types interact in the brain it is important that any in vitro model developed reflects this arrangement. Our findings indicate that stem cell derived neuron and astrocyte networks can communicate, and so have the potential to interact in a tripartite manner as is seen in vivo. This study therefore lays the foundation for further development of stem cell derived neurons and astrocytes into therapeutic cell replacement and human toxicology/disease models. More recently our data provides evidence for a detrimental effect of Aβ on carbohydrate metabolism in both neurons and astrocytes. As a purely in vitro system, human stem cell models can be readily manipulated and maintained in culture for a period of months without the use of animals. In our laboratory cultures can be maintained in culture for up to 12 months months thus providing the opportunity to study the consequences of these changes over extended periods of time relevant to aspects of the disease progression time frame in vivo. In addition, their human origin provides a more realistic in vitro model as well as informing other human in vitro models such as patient-derived iPSC.
Resumo:
Dengue fever is one of the most important mosquito-borne diseases worldwide and is caused by infection with dengue virus (DENV). The disease is endemic in tropical and sub-tropical regions and has increased remarkably in the last few decades. At present, there is no antiviral or approved vaccine against the virus. Treatment of dengue patients is usually supportive, through oral or intravenous rehydration, or by blood transfusion for more severe dengue cases. Infection of DENV in humans and mosquitoes involves a complex interplay between the virus and host factors. This results in regulation of numerous intracellular processes, such as signal transduction and gene transcription which leads to progression of disease. To understand the mechanisms underlying the disease, the study of virus and host factors is therefore essential and could lead to the identification of human proteins modulating an essential step in the virus life cycle. Knowledge of these human proteins could lead to the discovery of potential new drug targets and disease control strategies in the future. Recent advances of high throughput screening technologies have provided researchers with molecular tools to carry out investigations on a large scale. Several studies have focused on determination of the host factors during DENV infection in human and mosquito cells. For instance, a genome-wide RNA interference (RNAi) screen has identified host factors that potentially play an important role in both DENV and West Nile virus replication (Krishnan et al. 2008). In the present study, a high-throughput yeast two-hybrid screen has been utilised in order to identify human factors interacting with DENV non-structural proteins. From the screen, 94 potential human interactors were identified. These include proteins involved in immune signalling regulation, potassium voltage-gated channels, transcriptional regulators, protein transporters and endoplasmic reticulum-associated proteins. Validation of fifteen of these human interactions revealed twelve of them strongly interacted with DENV proteins. Two proteins of particular interest were selected for further investigations of functional biological systems at the molecular level. These proteins, including a nuclear-associated protein BANP and a voltage-gated potassium channel Kv1.3, both have been identified through interaction with the DENV NS2A. BANP is known to be involved in NF-kB immune signalling pathway, whereas, Kv1.3 is known to play an important role in regulating passive flow of potassium ions upon changes in the cell transmembrane potential. This study also initiated a construction of an Aedes aegypti cDNA library for use with DENV proteins in Y2H screen. However, several issues were encountered during the study which made the library unsuitable for protein interaction analysis. In parallel, innate immune signalling was also optimised for downstream analysis. Overall, the work presented in this thesis, in particular the Y2H screen provides a number of human factors potentially targeted by DENV during infection. Nonetheless, more work is required to be done in order to validate these proteins and determine their functional properties, as well as testing them with infectious DENV to establish a biological significance. In the long term, data from this study will be useful for investigating potential human factors for development of antiviral strategies against dengue.
Resumo:
Networks have come to occupy a key position in the strategic armoury of the government, business and community sectors and now have impact on a broad array of policy and management arenas. An emphasis on relationships, trust and mutuality mean that networks function on a different operating logic to the conventional processes of government and business. It is therefore important that organizational members of networks are able to adopt the skills and culture necessary to operate successfully under these distinctive kinds of arrangements. Because networks function from a different operational logic to traditional bureaucracies, public sector organizations may experience difficulties in adapting to networked arrangements. Networks are formed to address a variety of social problems or meet capability gaps within organizations. As such they are often under pressure to quickly produce measurable outcomes and need to form rapidly and come to full operation quickly. This paper presents a theoretical exploration of how diverse types of networks are required for different management and policy situations and draws on a set of public sector case studies to understand/demonstrate how these various types of networked arrangements may be ‘turbo-charged’ so that they more quickly adopt the characteristics necessary to deliver required outcomes.