913 resultados para Signal processing Digital techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Kalman filter algorithm has been applied to interpret the optical reflectance excursions during vacuum deposition of infrared coatings and multilayer thin-film filters. The application has been described in detail elsewhere and this paper now reports on-line experience for estimating deposition rate and thickness. The estimation proved sufficiently reliable to firstly 'navigate' regular manufacture (as controlled by a skilled operator) and to subsequently reproduce the skill without interpretation or intervention whilst maintaining exemplary product quality. Optical control by means of this Kalman filter application is therefore considered suitable as a basis for the automated manufacture of infrared coatings and multilayer thin-film filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate ex vivo the accuracy an electronic apex locator during root canal length determination in primary molars. Methods: One calibrated examiner determined the root canal length in 15 primary molars (total=34 root canals) with different stages of root resorption. Root canal length was measured both visually, with the placement of a K-file 1 mm short of the apical foramen or the apical resorption bevel, and electronically using an electronic apex locator (Digital Signal Processing). Data were analyzed statistically using the intraclass correlation (ICC) test. Results: Comparing the actual and electronic root canal length measurements in the primary teeth showed a high correlation (ICC=0.95) Conclusions: The Digital Signal Processing apex locator is useful and accurate for apex foramen location during root canal length measurement in primary molars. (Pediatr Dent 200937:320-2) Received April 75, 2008 vertical bar Lost Revision August 21, 2008 vertical bar Revision Accepted August 22, 2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the accuracy of electronic apex locators Digital Signal Processing (DSP) and ProPex, for root canal length determination in primary teeth. Fifteen primary molars (a total of 34 root canals) were divided into two groups: Group I - without physiological resorption (n = 16); and Group II - with physiological resorption (n = 18). The length of each canal was measured by introducing a file until its tip was visible and then it was retracted 1 mm. For electronic measurement, the devices were set to 1 mm short of the apical resorption. The data were analysed statistically using the intraclass correlation coefficient (ICC). Results showed that the ICC was high for both electronic apex locators in all situations - with (ICC: DSP = 0.82 and Propex = 0.89) or without resorption (ICC: DSP = 0.92 and Propex = 0.90). Both apex locators were extremely accurate in determining the working length in primary teeth, both with or without physiological resorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grinding process is usually the last finishing process of a precision component in the manufacturing industries. This process is utilized for manufacturing parts of different materials, so it demands results such as low roughness, dimensional and shape error control, optimum tool-life, with minimum cost and time. Damages on the parts are very expensive since the previous processes and the grinding itself are useless when the part is damaged in this stage. This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding process. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 e VC131 steels. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate acquisition system at 2.5 MHz was used to collect the raw acoustic emission instead of root mean square value usually employed. In each test AE data was analyzed off-line, with results compared to inspection of each workpiece for burn and other metallurgical anomaly. A number of statistical signal processing tools have been evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machines with moving parts give rise to vibrations and consequently noise. The setting up and the status of each machine yield to a peculiar vibration signature. Therefore, a change in the vibration signature, due to a change in the machine state, can be used to detect incipient defects before they become critical. This is the goal of condition monitoring, in which the informations obtained from a machine signature are used in order to detect faults at an early stage. There are a large number of signal processing techniques that can be used in order to extract interesting information from a measured vibration signal. This study seeks to detect rotating machine defects using a range of techniques including synchronous time averaging, Hilbert transform-based demodulation, continuous wavelet transform, Wigner-Ville distribution and spectral correlation density function. The detection and the diagnostic capability of these techniques are discussed and compared on the basis of experimental results concerning gear tooth faults, i.e. fatigue crack at the tooth root and tooth spalls of different sizes, as well as assembly faults in diesel engine. Moreover, the sensitivity to fault severity is assessed by the application of these signal processing techniques to gear tooth faults of different sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasound imaging is widely used in medical diagnostics as it is the fastest, least invasive, and least expensive imaging modality. However, ultrasound images are intrinsically difficult to be interpreted. In this scenario, Computer Aided Detection (CAD) systems can be used to support physicians during diagnosis providing them a second opinion. This thesis discusses efficient ultrasound processing techniques for computer aided medical diagnostics, focusing on two major topics: (i) Ultrasound Tissue Characterization (UTC), aimed at characterizing and differentiating between healthy and diseased tissue; (ii) Ultrasound Image Segmentation (UIS), aimed at detecting the boundaries of anatomical structures to automatically measure organ dimensions and compute clinically relevant functional indices. Research on UTC produced a CAD tool for Prostate Cancer detection to improve the biopsy protocol. In particular, this thesis contributes with: (i) the development of a robust classification system; (ii) the exploitation of parallel computing on GPU for real-time performance; (iii) the introduction of both an innovative Semi-Supervised Learning algorithm and a novel supervised/semi-supervised learning scheme for CAD system training that improve system performance reducing data collection effort and avoiding collected data wasting. The tool provides physicians a risk map highlighting suspect tissue areas, allowing them to perform a lesion-directed biopsy. Clinical validation demonstrated the system validity as a diagnostic support tool and its effectiveness at reducing the number of biopsy cores requested for an accurate diagnosis. For UIS the research developed a heart disease diagnostic tool based on Real-Time 3D Echocardiography. Thesis contributions to this application are: (i) the development of an automated GPU based level-set segmentation framework for 3D images; (ii) the application of this framework to the myocardium segmentation. Experimental results showed the high efficiency and flexibility of the proposed framework. Its effectiveness as a tool for quantitative analysis of 3D cardiac morphology and function was demonstrated through clinical validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present thesis, a new methodology of diagnosis based on advanced use of time-frequency technique analysis is presented. More precisely, a new fault index that allows tracking individual fault components in a single frequency band is defined. More in detail, a frequency sliding is applied to the signals being analyzed (currents, voltages, vibration signals), so that each single fault frequency component is shifted into a prefixed single frequency band. Then, the discrete Wavelet Transform is applied to the resulting signal to extract the fault signature in the frequency band that has been chosen. Once the state of the machine has been qualitatively diagnosed, a quantitative evaluation of the fault degree is necessary. For this purpose, a fault index based on the energy calculation of approximation and/or detail signals resulting from wavelet decomposition has been introduced to quantify the fault extend. The main advantages of the developed new method over existing Diagnosis techniques are the following: - Capability of monitoring the fault evolution continuously over time under any transient operating condition; - Speed/slip measurement or estimation is not required; - Higher accuracy in filtering frequency components around the fundamental in case of rotor faults; - Reduction in the likelihood of false indications by avoiding confusion with other fault harmonics (the contribution of the most relevant fault frequency components under speed-varying conditions are clamped in a single frequency band); - Low memory requirement due to low sampling frequency; - Reduction in the latency of time processing (no requirement of repeated sampling operation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of the parallel vector implementation of the one- and two-dimensional orthogonal transforms is evaluated. The orthogonal transforms are computed using actual or modified fast Fourier transform (FFT) kernels. The factors considered in comparing the speed-up of these vectorized digital signal processing algorithms are discussed and it is shown that the traditional way of comparing th execution speed of digital signal processing algorithms by the ratios of the number of multiplications and additions is no longer effective for vector implementation; the structure of the algorithm must also be considered as a factor when comparing the execution speed of vectorized digital signal processing algorithms. Simulation results on the Cray X/MP with the following orthogonal transforms are presented: discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh transform (DWHT), and discrete Hadamard transform (DHDT). A comparison between the DHT and the fast Hartley transform is also included.(34 refs)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter presents signal processing techniques to detect a passive thermal threshold detector based on a chipless time-domain ultrawideband (UWB) radio frequency identification (RFID) tag. The tag is composed by a UWB antenna connected to a transmission line, in turn loaded with a biomorphic thermal switch. The working principle consists of detecting the impedance change of the thermal switch. This change occurs when the temperature exceeds a threshold. A UWB radar is used as the reader. The difference between the actual time sample and a reference signal obtained from the averaging of previous samples is used to determine the switch transition and to mitigate the interferences derived from clutter reflections. A gain compensation function is applied to equalize the attenuation due to propagation loss. An improved method based on the continuous wavelet transform with Morlet wavelet is used to overcome detection problems associated to a low signal-to-noise ratio at the receiver. The average delay profile is used to detect the tag delay. Experimental measurements up to 5 m are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal. © 2013 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.