903 resultados para Signal interference
Resumo:
Previous studies have shown that saccadic eye responses but not manual responses were sensitive to the kind of warning signal used, with visual onsets producing longer saccadic latencies compared to visual offsets. The aim of the present study was to determine the effects of distinct warning signals on manual latencies and to test the premise that the onset interference, in fact, does not occur for manual responses. A second objective was to determine if the magnitude of the warning effects could be modulated by contextual procedures. Three experimental conditions based on the kind of warning signal used (visual onset, visual offset and auditory warning) were run in two different contexts (blocked and non-blocked). Eighteen participants were asked to respond to the imperative stimulus that would occur some milliseconds (0, 250, 500 or 750 ms) after the warning signal. The experiment consisted in three experimental sessions of 240 trials, where all the variables were counterbalanced. The data showed that visual onsets produced longer manual latencies than visual offsets in the non-blocked context (275 vs 261 ms; P < 0.001). This interference was obtained, however, only for short intervals between the warning and the stimulus, and was abolished when the blocked context was used (256 vs 255 ms; P = 0.789). These results are discussed in terms of bottom-up and top-down interactions, mainly those related to the role of attentional processing in canceling out competitive interactions and suppressive influences of a distractor on the relevant stimulus.
Resumo:
In order to investigate signal transduction and activation of transcription 3 (STAT3) signaling on angiogenesis in colorectal carcinoma (CRC) after inhibiting STAT3 expression, we constructed the HT-29-shSTAT3 cell line by lentivirus-mediated RNAi. Cell growth was assessed with MTT and the cell cycle distribution by flow cytometry. CRC nude mouse models were established and tumor growth was monitored periodically. On day 30, all mice were killed and tumor tissues were removed. Microvessel density (MVD) was determined according to CD34-positive staining. The expression of vascular endothelial growth factor A (VEGFA), matrix metalloproteinase-2 (MMP2) and basic fibroblast growth factor (FGF2) was monitored by quantitative real-time PCR and Western blot analysis. Knockdown of STAT3 expression significantly inhibited cell growth in HT-29 cells, with a significantly higher proportion of cells at G0/G1 (P < 0.01). Consistently, in vivo data also demonstrated that tumor growth was significantly inhibited in mice injected with HT-29-shSTAT3 cells. MVD was 9.80 ± 3.02 in the HT-29-shSTAT3 group, significantly less than that of the control group (P < 0.01). mRNA and protein levels of VEGFA and MMP2 in the HT-29-shSTAT3 group were significantly lower than in the control group (P < 0.05), but no significant difference was observed in the mRNA or protein level of FGF2 (P > 0.05). Taken together, these results demonstrate that STAT3 signaling is important to the growth of CRC and promotes angiogenesis by regulating VEGFA and MMP2 expression.
Resumo:
This paper proposes a full interference cancellation (FIC) approach for two-path cooperative communications. Unlike the single relay schemes, the two-path cooperative scheme involves two relay nodes, so that the source can continuously transmit data to the two relays alternatively and the full bandwidth efficiency with respect to the direct transmission can be retained. The two-path relay scheme may however suffer from inter-relay interference which is caused by the simultaneous transmission of the source and one of the relays at any time. In this paper, first the inter-relay interference is expressed as a single recursive term in the received signal, and then the FIC approach is proposed to fully remove the inter-relay interference. The FIC has not only better performance but also less complexity than existing approaches. Numerical examples are also given to verify the proposed approach.
Resumo:
Most research on Distributed Space-Time Block Coding (D-STBC) has so far focused on the case of 2 relay nodes and assumed that the relay nodes are perfectly synchronised at the symbol level. This paper applies STBC to 4-relaynode systems under quasi-synchronisation and derives a new detector based on parallel interference cancellation, which proves to be very effective in suppressing the impact of imperfect synchronisation.
Resumo:
One major assumption in all orthogonal space-time block coding (O-STBC) schemes is that the channel remains static over the length of the code word. However, time-selective fading channels do exist, and in such case conventional O-STBC detectors can suffer from a large error floor in the high signal-to-noise ratio (SNR) cases. As a sequel to the authors' previous papers on this subject, this paper aims to eliminate the error floor of the H(i)-coded O-STBC system (i = 3 and 4) by employing the techniques of: 1) zero forcing (ZF) and 2) parallel interference cancellation (PIC). It is. shown that for an H(i)-coded system the PIC is a much better choice than the ZF in terms of both performance and computational complexity. Compared with the, conventional H(i) detector, the PIC detector incurs a moderately higher computational complexity, but this can well be justified by the enormous improvement.
Resumo:
One major assumption in all orthogonal space-time block coding (O-STBC) schemes is that the channel remains static over the entire length of the codeword. However, time selective fading channels do exist, and in such case the conventional O-STBC detectors can suffer from a large error floor in the high signal-to-noise ratio (SNR) cases. This paper addresses such an issue by introducing a parallel interference cancellation (PIC) based detector for the Gi coded systems (i=3 and 4).
Resumo:
Mammalian cells have a large number of intracellular peptides that are generated by extralysosomal proteases. In this study, the enzymatic activity of thimet oligopeptidase (EP24.15) was inhibited in human embryonic kidney (HEK) 293 cells using a specific siRNA sequence. The semi-quantitative intracellular peptidome analyses of siRNA-transfected HEK293 cells shows that the levels of specific intracellular peptides are either increased or decreased upon EP24.15 inhibition. Decreased expression of EP24.15 was sufficient to potentiate luciferase gene reporter activation by isoproterenol (1-10 mu M). The protein kinase A inhibitor KT5720 (1 mu M) reduced the positive effect of the EP24.15 siRNA on isoproterenol signaling. Thus, EP24.15 inhibition by siRNA modulates the levels of specific intracellular peptides and isoproterenol signal transduction. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
We have realized a Data Acquisition chain for the use and characterization of APSEL4D, a 32 x 128 Monolithic Active Pixel Sensor, developed as a prototype for frontier experiments in high energy particle physics. In particular a transition board was realized for the conversion between the chip and the FPGA voltage levels and for the signal quality enhancing. A Xilinx Spartan-3 FPGA was used for real time data processing, for the chip control and the communication with a Personal Computer through a 2.0 USB port. For this purpose a firmware code, developed in VHDL language, was written. Finally a Graphical User Interface for the online system monitoring, hit display and chip control, based on windows and widgets, was realized developing a C++ code and using Qt and Qwt dedicated libraries. APSEL4D and the full acquisition chain were characterized for the first time with the electron beam of the transmission electron microscope and with 55Fe and 90Sr radioactive sources. In addition, a beam test was performed at the T9 station of the CERN PS, where hadrons of momentum of 12 GeV/c are available. The very high time resolution of APSEL4D (up to 2.5 Mfps, but used at 6 kfps) was fundamental in realizing a single electron Young experiment using nanometric double slits obtained by a FIB technique. On high statistical samples, it was possible to observe the interference and diffractions of single isolated electrons traveling inside a transmission electron microscope. For the first time, the information on the distribution of the arrival time of the single electrons has been extracted.
Resumo:
The main areas of research of this thesis are Interference Management and Link-Level Power Efficiency for Satellite Communications. The thesis is divided in two parts. Part I tackles the problem of interference environments in satellite communications, and interference mitigation strategies, not just in terms of avoidance of the interferers, but also in terms of actually exploiting the interference present in the system as a useful signal. The analysis follows a top-down approach across different levels of investigation, starting from system level consideration on interference management, down to link-level aspects and to intra-receiver design. Interference Management techniques are proposed at all the levels of investigation, with interesting results. Part II is related to efficiency in the power domain, for instance in terms of required Input Back-off at the power amplifiers, which can be an issue for waveform based on linear modulations, due to their varying envelope. To cope with such aspects, an analysis is carried out to compare linear modulation with waveforms based on constant envelope modulations. It is shown that in some scenarios, constant envelope waveforms, even if at lower spectral efficiency, outperform linear modulation waveform in terms of energy efficiency.
Resumo:
This thesis collects the outcomes of a Ph.D. course in Telecommunications Engineering and it is focused on the study and design of possible techniques able to counteract interference signal in Global Navigation Satellite System (GNSS) systems. The subject is the jamming threat in navigation systems, that has become a very increasingly important topic in recent years, due to the wide diffusion of GNSS-based civil applications. Detection and mitigation techniques are developed in order to fight out jamming signals, tested in different scenarios and including sophisticated signals. The thesis is organized in two main parts, which deal with management of GNSS intentional counterfeit signals. The first part deals with the interference management, focusing on the intentional interfering signal. In particular, a technique for the detection and localization of the interfering signal level in the GNSS bands in frequency domain has been proposed. In addition, an effective mitigation technique which exploits the periodic characteristics of the common jamming signals reducing interfering effects at the receiver side has been introduced. Moreover, this technique has been also tested in a different and more complicated scenario resulting still effective in mitigation and cancellation of the interfering signal, without high complexity. The second part still deals with the problem of interference management, but regarding with more sophisticated signal. The attention is focused on the detection of spoofing signal, which is the most complex among the jamming signal types. Due to this highly difficulty in detect and mitigate this kind of signal, spoofing threat is considered the most dangerous. In this work, a possible techniques able to detect this sophisticated signal has been proposed, observing and exploiting jointly the outputs of several operational block measurements of the GNSS receiver operating chain.
Resumo:
Stable carbon isotope analysis of methane (delta C-13 of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC) isotope ratio mass spectrometry (IRMS) coupled to a combustion-preconcentration unit. This report shows that the atmospheric trace gas krypton (Kr) can severely interfere during the mass spectrometric measurement, leading to significant biases in delta C-13 of CH4, if krypton is not sufficiently separated during the analysis. According to our experiments, the krypton interference is likely composed of two individual effects, with the lateral tailing of the doubly charged Kr-86 peak affecting the neighbouring m/z 44 and partially the m/z 45 Faraday cups. Additionally, a broad signal affecting m/z 45 and especially m/z 46 is assumed to result from scattered ions of singly charged krypton. The introduced bias in the measured isotope ratios is dependent on the chromatographic separation, the krypton-to-CH4 mixing ratio in the sample, the focusing of the mass spectrometer as well as the detector configuration and can amount to up to several per mil in delta C-13. Apart from technical solutions to avoid this interference, we present correction routines to a posteriori remove the bias.
Resumo:
In this work, the capacity and the interference statistics of the uplink of high-altitude platforms (HAPs) for asynchronous and synchronous WCDMA system assuming finite transmission power and imperfect power control are studied. Propagation loss used to calculate the received signal power is due to the distance, shadowing, and wall insertion loss. The uplink capacity for 3- and 3.75-G services is given for different cell radius assuming outdoor and indoor voice users only, data users only and a combination of the two services. For 37 macrocells HAP, the total uplink capacity is 3,034 outdoor voice users or 444 outdoor data users. When one or more than one user is an indoor user, the uplink capacity is 2,923 voice users or 444 data users when the walls entry loss is 10 dB. It is shown that the effect of the adjacent channels interference is very small.
Resumo:
Background Magnetoencephalography (MEG) provides a direct measure of brain activity with high combined spatiotemporal resolution. Preprocessing is necessary to reduce contributions from environmental interference and biological noise. New method The effect on the signal-to-noise ratio of different preprocessing techniques is evaluated. The signal-to-noise ratio (SNR) was defined as the ratio between the mean signal amplitude (evoked field) and the standard error of the mean over trials. Results Recordings from 26 subjects obtained during and event-related visual paradigm with an Elekta MEG scanner were employed. Two methods were considered as first-step noise reduction: Signal Space Separation and temporal Signal Space Separation, which decompose the signal into components with origin inside and outside the head. Both algorithm increased the SNR by approximately 100%. Epoch-based methods, aimed at identifying and rejecting epochs containing eye blinks, muscular artifacts and sensor jumps provided an SNR improvement of 5–10%. Decomposition methods evaluated were independent component analysis (ICA) and second-order blind identification (SOBI). The increase in SNR was of about 36% with ICA and 33% with SOBI. Comparison with existing methods No previous systematic evaluation of the effect of the typical preprocessing steps in the SNR of the MEG signal has been performed. Conclusions The application of either SSS or tSSS is mandatory in Elekta systems. No significant differences were found between the two. While epoch-based methods have been routinely applied the less often considered decomposition methods were clearly superior and therefore their use seems advisable.
Resumo:
Cognitive radio represents a promising paradigm to further increase transmission rates in wireless networks, as well as to facilitate the deployment of self-organized networks such as femtocells. Within this framework, secondary users (SU) may exploit the channel under the premise to maintain the quality of service (QoS) on primary users (PU) above a certain level. To achieve this goal, we present a noncooperative game where SU maximize their transmission rates, and may act as well as relays of the PU in order to hold their perceived QoS above the given threshold. In the paper, we analyze the properties of the game within the theory of variational inequalities, and provide an algorithm that converges to one Nash Equilibrium of the game. Finally, we present some simulations and compare the algorithm with another method that does not consider SU acting as relays.