962 resultados para Ship captains.
Resumo:
Signed lower right Albert Einstein
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Rose, sister of Fred and Beatrice Herz
Resumo:
On January 6, 1938 our family left Nazi Germany and boarded a ship "Deutschland" for New York. This ended our family's life in Germany forever. Rudolph ES Mathias.
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Digital image
Resumo:
Digital image
Resumo:
In this thesis the role played by expansive and introduced species in the phytoplankton ecology of the Baltic Sea was investigated. The aims were threefold. First, the studies investigated the resting stages of dinoflagellates, which were transported into the Baltic Sea via shipping and were able to germinate under the ambient, nutrient-rich, brackish water conditions. The studies also estimated which factors favoured the occurrence and spread of P. minimum in the Baltic Sea and discussed the identification of this morphologically variable species. In addition, the classification of phytoplankton species recently observed in the Baltic Sea was discussed. Incubation of sediments from four Finnish ports and 10 ships ballast tanks revealed that the sediments act as sources of living dinoflagellates and other phytoplankton. Dinoflagellates germinated from all ports detected and from 90% of ballast tanks. The concentrations of cells germinating from ballast tank sediments were mostly low compared with the acceptable cell concentrations set by the International Maritime Organization s (IMO s) International Convention for the Control and Management of Ships Ballast Water and Sediments. However, the IMO allows such high concentrations of small cells in the discharged ballast water that the total number of cells in large ballast water tanks can be very high. Prorocentrum minimum occurred in the Baltic Sea annually but with no obvious trend in the 10-year timespan from 1993 to 2002. The species occurred under wide ranges of temperatures and salinities and the abundance of the species was positively related especially to the presence of organic nitrogen and phosphorus. This indicated that the species was favoured by increased organic nutrient loading and runoff from land and rivers. The cell shape of P. minimum varied from triangular to oval-round, but morphological fine details indicated that only one morphospecies was present. P. minimum also is, according to present knowledge, the only potentially harmful phytoplankton species that has recently expanded widely into new areas of the Baltic Sea.
Resumo:
This paper describes a concept for a collision avoidance system for ships, which is based on model predictive control. A finite set of alternative control behaviors are generated by varying two parameters: offsets to the guidance course angle commanded to the autopilot and changes to the propulsion command ranging from nominal speed to full reverse. Using simulated predictions of the trajectories of the obstacles and ship, compliance with the Convention on the International Regulations for Preventing Collisions at Sea and collision hazards associated with each of the alternative control behaviors are evaluated on a finite prediction horizon, and the optimal control behavior is selected. Robustness to sensing error, predicted obstacle behavior, and environmental conditions can be ensured by evaluating multiple scenarios for each control behavior. The method is conceptually and computationally simple and yet quite versatile as it can account for the dynamics of the ship, the dynamics of the steering and propulsion system, forces due to wind and ocean current, and any number of obstacles. Simulations show that the method is effective and can manage complex scenarios with multiple dynamic obstacles and uncertainty associated with sensors and predictions.
Resumo:
In this paper we model a scenario where a ship uses decoys to evade a hostile torpedo. We address the problem of enhancing ship survivability against enemy torpedoes by using single and multiple decoy deployments. We incorporate deterministic ship maneuvers and realistic constraints on turn rates, field of view, etc in the model. We formulate the objective function to quantify and maximize the survivability of the ship in terms of maximizing the intercept time. We introduce the concept of optimal deployment regions, same side deployment, and zig-zag deployment strategies. Finally, we present simulation results.