990 resultados para Shiga toxin producing E. coli (STEC)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shigella toxin-producing Escherichia coli (STEC) is well known for its complications such as haemolytic uraemic syndrome (HUS), but neurological symptoms have also been reported. While most cases of infection with STEC occur with concurrent HUS, we describe a patient with severe neurological symptoms in the absence of HUS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During processing of cattle carcasses, contamination may occurs with the transfer of microbiota of animals feaces to carcasses. This contamination many times may be by Escherichia coli carriers of virulence factor as stx and eae genes being classified as Shiga like toxin. Shiga toxin-producing Escherichia coli (STEC) is recognized wordwide as human pathogen. A survey was performed to determine the sensibility profile to several antimicrobial drugs of STEC in carcasses obtained from an abattoir in Brazil between March 2008 and August at 2009. A total of 120 STEC were isolated. All isolates were confirmed as being E. coli by their biochemical analysis and submitted to polymerase chain reaction (PCR) for detection of stx, eae and ehly genes. No strains was isolated being carriers of ehly gene. The number of isolates carriers of eae gene were 48/120. The most frequent resistance was seen against cephalothin (84.0%), streptomycin (45.0%), nalidixic acid (42.0%) and tetracycline (20.0%). Multidrug resistance (MDR) to three or more antimicrobial agents was observed in 46 (38.3%) E. coli isolates. The findings of STEC and MRD show that cattle carcasses may be a reservoir of pathogenic bacterial for the consumer public. © 2011 Academic Journals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY Feral pigeons (Columbia livia) live in close contact with humans and other animals. They can transmit potentially pathogenic and zoonotic agents. The objective of this study was to isolate and detect strains of diarrheagenic Escherichia coli and Campylobacter jejuniof urban feral pigeons from an area of Lima, Peru. Fresh dropping samples from urban parks were collected for microbiological isolation of E. coli strains in selective agar, and Campylobacterby filtration method. Molecular identification of diarrheagenic pathotypes of E.coliand Campylobacter jejuni was performed by PCR. Twenty-two parks were sampled and 16 colonies of Campylobacter spp. were isolated. The 100% of isolates were identified as Campylobacter jejuni. Furthermore, 102 colonies of E. coli were isolated and the 5.88% resulted as Enteropathogenic (EPEC) type and 0.98% as Shiga toxin-producing E. coli (STEC). The urban feral pigeons of Lima in Peru can act as a reservoir or carriers of zoonotic potentially pathogenic enteric agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the frequency of the different diarrheagenic Escherichia coli (DEC) categories isolated from children with acute endemic diarrhea in Salvador, Bahia. The E. coli isolates were investigated by colony blot hibridization whit the following genes probes: eae, EAF, bfpA, Stx1, Stx2, ST-Ih, ST-Ip, LT-I, LT-II, INV, and EAEC, as virulence markers to distinguish typical and atypical EPEC, EHEC/STEC, ETEC, EIEC, and EAEC. Seven of the eight categories of DEC were detected. The most frequently isolated was atypical EPEC (10.1%) followed by ETEC (7.5%), and EAEC (4.2%). EHEC, STEC, EIEC, and typical EPEC were each detected once. The strains of ETEC, EAEC, and atypical EPEC belonged to a wide variety of serotypes. The serotypes of the others categories were O26:H11 (EHEC), O21:H21 (STEC), O142:H34 (typical EPEC), and O?H55 (EIEC). We also present the clinical manifestations and other pathogenic species observed in children with DEC. This is the first report of EHEC and STEC in Salvador, and one of the first in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 represents the major Shiga toxin-producing E. coli (STEC) strain related to large outbreaks and severe diseases such as hemorrhagic colitis (HC) and the potentially lethal hemolytic uremic syndrome (HUS). The aim of this study was to report the occurrence and molecular characterization of O157:H7 isolates obtained by rectal swab from 52 healthy dairy cattle belonging to 21 farms in Mid-West of Brazil. Detection of 16SrRNA, stx1, stx2, rfbO157, fliCh7, eae, ehxA, saa, cnf1, chuA, yjaA and TSPE4.C2 genes was performed by PCR. The isolates were further characterized by serotyping. Two hundred and sixty E. coli isolates were obtained, of which 126 were characterized as STEC. Two isolates from the same cow were identified as serotype O157:H7. Both isolates presented the stx2, eae, ehxA, saa and cnf1 virulence factor genes and the chuA gene in the phylogenetic classification (virulent group D), suggesting that they were clones. The prevalence of O157:H7 was found to be 1.92% (1/52 animals), demonstrating that healthy dairy cattle from farms in the Mid-West of Brazil are an important reservoir for highly pathogenic E. coli O157:H7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prevalence of Escherichia coli O157:H7 infection in birds is low but several deliberate inoculation studies show that poultry are readily and persistently infected by this organism indicating a possible threat to public health. The mechanisms of colonisation of poultry are not understood and the aim is to establish models to study the interaction of E. coli O157:H7, at the cellular and whole animal levels. A non-toxigenic E. coli O157:H7 (NCTC 12900) was used in adherence assays with an avian epithelial cell line (Div-1) and used to inoculate 1-day-old SPF chicks. In vitro, NCTC 12900 induced micro-colonies associated with cytoskeletal arrangements and pedestal formation with intimate bacterial attachment. In the 1-day-old SPF chick, a dose of 1 x 10(5) cfu resulted in rapid and extensive colonisation of the gastrointestinal tract and transient colonisation of the liver and spleen. The number of E. coli O157:H7 organisms attained approximately 10(8) cfu/ml caecal homogenate 24 h after inoculation and approximately 10(7) cfu/ml caecal homogenate was still present at day 92. Faecal shedding persisted for 169 days, ceasing 9 days after the birds came into lay and 6% of eggs were contaminated on the eggshell. Histological analysis of tissue samples from birds dosed with 1 x 10(7) cfu gave evidence for E coli O157:H7 NCTC 12900 induced micro-colonies on the caecal mucosa, although evidence for attaching effacing lesions was equivocal. These models may be suitable to study those factors of E. coli O157:H7 that mediate persistent colonisation in avian species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shiga toxin (Stx)-positive Escherichia coli O157:117 readily colonize and persist in specific-pathogen-free (SPF) chicks, and we have shown that an Stx-negative E. coli O157:117 isolate (NCTC12900) readily colonizes SPF chicks for up to 169 days after oral inoculation at 1 day of age. However, the role of intimin in the persistent colonization of poultry remains unclear. Thus, to investigate the role of intimin and flagella, which is a known factor in the persistence of non-O157 E. coli in poultry, isogenic single- and double-intimin and aflagellar mutants were constructed in E. coli O157:117 isolate NCTC12900. These mutants were used to inoculate (10(5) CFU) 1-day-old SPF chicks. In general, significant attenuation of the aflagellate and intiminaflagellate mutants, but not the intimin mutant, was noted at similar time points between 22 and 92 days after inoculation. The intimin-deficient mutant was still being shed at the end of the experiment, which was 211 days after inoculation, 84 days more than the wild type. Shedding of the aflagellar and intimin-aflagellar mutants ceased 99 and 113 days after inoculation, respectively. Histological analysis of gastrointestinal tissues from inoculated birds gave no evidence for true microcolony formation by NCTC12900 or intimin and aflagellar mutants to epithelial cells. However, NCTC12900 mutant derivatives associated with the mucosa were observed as individual cells and/or as large aggregates. Association with luminal contents was also noted. These data suggest that O157 organisms do not require intimin for the persistent colonization of chickens, whereas flagella do play a role in this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolation of Shiga-toxin (Stx) positive Escherichia coli O157:H7 from commercially grown pigs has been reported. Furthermore, experimental infection studies have demonstrated that Stx-positive E. coli O157:H7 can persist in 12-week-old experimentally orally inoculated conventional pigs for up to 2 months and that persistence was not dependent upon intimin. We have shown that the flagellum of Stx-negative E. coli O157:H7 does not have a role to play in pathogenesis in ruminant models whereas, in poultry, the flagellum of E. coli O157:H7 was important for long-term persistent infection. The contribution of the flagellum of Stx-negative E. coli O157 in the colonisation of pigs was investigated by adherence assays on a porcine (IPI-21) cell line, porcine in vitro organ culture (IVOC) and experimental oral inoculation of conventional 14-week-old pigs. E. coli O157:H7 NCTC12900nal(r) and isogenic aflagellate and intimin deficient mutants adhered equally well to IPI-21 cells. In porcine IVOC association assays, E. coli O157:H7 NCTC12900nal(r) was associated in significantly higher numbers to tissues from the caecum and the terminal rectum than other sites. The aflagellate and intimin deficient mutants significantly adhered in greater numbers to more IVOC gastrointestinal tissues than the parent. Groups of 14-week-old pigs were dosed orally with 10(10) CFU/10 ml of either E. coli O157:H7 NCTC12900nal(r) or isogenic aflagellate and intimin deficient mutants and recovery of each test strain was similar. Histological analysis of pig tissues at post mortem examination revealed that E. coli O157 specifically stained bacteria were associated with the mucosa of the ascending and spiral colon. These data suggest that colonisation and persistence of Stx-negative E. coli O157:H7 in pigs, involves mechanisms that do not require the flagellum or intimin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beef carcass sponge samples collected between March 2003 and August 2005 at an abattoir in Brazil were surveyed for the presence of Shiga toxin-producing Escherichia coli (STEC). Only one carcass among the 80 tested showed a STEC, stx2-encoding gene by PCR amplification. The frequency of carcass contamination by E. coli during processing was tested at three situations, respectively: preevisceration, postevisceration and postprocessing, during the rain and dry seasons. The prevalence of E. coli at the three points was of 30.0%, 70.0%, 27.5% in the rain season and of 22.5%, 55.0%, 17.5% during the dry season, respectively. The E. coli isolates exhibited a high level (45.0%) of multidrug resistance to two or more antimicrobial agents. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shiga toxin producing Escherichia coli (STEC) strains are foodborne pathogens whose ability to produce Shiga toxin (Stx) is due to the integration of Stx-encoding lambdoid bacteriophage (Stx phage). Circulating, infective Stx phages are very difficult to isolate, purify and propagate such that there is no information on their genetic composition and properties. Here we describe a novel approach that exploits the phage's ability to infect their host and form a lysogen, thus enabling purification of Stx phages by a series of sequential lysogen isolation and induction steps. A total of 15 Stx phages were rigorously purified from water samples in this way, classified by TEM and genotyped using a PCR-based multi-loci characterisation system. Each phage possessed only one variant of each target gene type, thus confirming its purity, with 9 of the 15 phages possessing a short tail-spike gene and identified by TEM as Podoviridae. The remaining 6 phages possessed long tails, four of which appeared to be contractile in nature (Myoviridae) and two of which were morphologically very similar to bacteriophage lambda (Siphoviridae).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shiga toxin (Stx)-producing Escherichia coli (STEC) colonizes the large intestine causing a spectrum of disorders, including watery diarrhea, bloody diarrhea (hemorrhagic colitis), and hemolytic-uremic syndrome. It is estimated that hemolytic-uremic syndrome is the most common cause of acute renal failure in infants in Argentina. Stx is a multimeric toxin composed of one A subunit and five B subunits. In this study we demonstrate that the Stx2 B subunit inhibits the water absorption (Jw) across the human and rat colonic mucosa without altering the electrical parameters measured as transepithelial potential difference and short circuit current. The time-course Jw inhibition by 400 ng/ml purified Stx2 B subunit was similar to that obtained using 12 ng/ml Stx2 holotoxin suggesting that both, A and B subunits of Stx2 contributed to inhibit the Jw. Moreover, non-hemorrhagic fluid accumulation was observed in rat colon loops after 16 h of treatment with 3 and 30 ng/ml Stx2 B subunit. These changes indicate that Stx2 B subunit induces fluid accumulation independently of A subunit activity by altering the usual balance of intestinal absorption and secretion toward net secretion. In conclusion, our results suggest that the Stx2 B subunit, which is non-toxic for Vero cells, may contribute to the watery diarrhea observed in STEC infection. Further studies will be necessary to determine whether the toxicity of Stx2 B subunit may have pathogenic consequences when it is used as a component in an acellular STEC vaccine or as a vector in cancer vaccines.