393 resultados para Shellfish


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study contributes to the knowledge of the biogeochemistry of Pb, Cd, Cu, and Ni in the Mediterranean Than Lagoon, southern France, which is an important shellfish farming system. The concentrations of the metals were determined in sediment cores and the overlying waters using inductively coupled plasma mass spectrometry. Particular attention was given to the determination of dissolved Cu species because of their dual role as essential nutrient and toxicant to planktonic organisms. Dissolved Cu speciation was determined using the diffusive gradient in thin-film technique (DGT) and competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV). Our data indicated a significant historical contamination of the sediments, which commenced in the second half of the 19th century, with trace metal inputs persisting until the end of the 20th century. In recent years a decrease in metal contamination has become apparent. The maxima observed for Pb, Cd, and Cu profiles probably indicate the occurence of anoxia crises. A strong complexation of the dissolved Cu species was observed in the waters of the Than Lagoon, which reduced the bioavailability of Cu. The dissolved Cu(2+) concentrations were probably too low to cause direct toxic effects on shellfish, but the highest concentration (5.29 pM) observed in this study can potentially influence phytoplankton communities. A comparison between the Cu speciation data indicates that up to 50% of the complexed Cu determined using CLE-ACSV was DGT labile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification is considered a major threat to marine ecosystems and may particularly affect primary producers. Here we investigated the impact of elevated pCO2 on paralytic shellfish poisoning toxin (PST) content and composition in two strains of Alexandrium tamarense, Alex5 and Alex2. Experiments were carried out as dilute batch to keep carbonate chemistry unaltered over time. We observed only minor changes with respect to growth and elemental composition in response to elevated pCO2. For both strains, the cellular PST content, and in particular the associated cellular toxicity, was lower in the high CO2 treatments. In addition, Alex5 showed a shift in its PST composition from a nonsulfated analogue towards less toxic sulfated analogues with increasing pCO2. Transcriptomic analyses suggest that the ability of A. tamarense to maintain cellular homeostasis is predominantly regulated on the post-translational level rather than on the transcriptomic level. Furthermore, genes associated to secondary metabolite and amino acid metabolism in Alex5 were down-regulated in the high CO2 treatment, which may explain the lower PST content. Elevated pCO2 also induced up-regulation of a putative sulfotransferase sxtN homologue and a substantial down-regulation of several sulfatases. Such changes in sulfur metabolism may explain the shift in PST composition towards more sulfated analogues. All in all, our results indicate that elevated pCO2 will have minor consequences for growth and elemental composition, but may potentially reduce the cellular toxicity of A. tamarense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combustion of fossil fuels has enriched levels of CO2 in the world's oceans and decreased ocean pH. Although the continuation of these processes may alter the growth, survival, and diversity of marine organisms that synthesize CaCO3shells, the effects of ocean acidification since the dawn of the industrial revolution are not clear. Here we present experiments that examined the effects of the ocean's past, present, and future (21st and 22nd centuries) CO2concentrations on the growth, survival, and condition of larvae of two species of commercially and ecologically valuable bivalve shellfish (Mercenaria mercenariaand Argopecten irradians). Larvae grown under near preindustrial CO2concentrations (250 ppm) displayed significantly faster growth and metamorphosis as well as higher survival and lipid accumulation rates compared with individuals reared under modern day CO2 levels. Bivalves grown under near preindustrial CO2 levels displayed thicker, more robust shells than individuals grown at present CO2 concentrations, whereas bivalves exposed to CO2 levels expected later this century had shells that were malformed and eroded. These results suggest that the ocean acidification that has occurred during the past two centuries may be inhibiting the development and survival of larval shellfish and contributing to global declines of some bivalve populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cover title: Sewage pollution effect on the shellfish and fishing industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducted in cooperation with, and under contract to, National Marine Fisheries Service.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorination was investigated as a treatment option for degrading and thus removing saxitoxins (paralytic shellfish poisons, PSPs) produced by cyanobacteria (blue-green algae) from water. It was found to be effective with the order of ease of degradation of the saxitoxins being GTX5 (B1) similar to dcSTX > STX > GTX3 similar to C2 > C1 > GTX2. However the effectiveness of chlorine was pH dependent. Degradation as a function of pH was not linear with the degree of degradation increasing rapidly at around pH 7.5. At pH 9 > 90% removal was possible provided a residual of 0.5 mg l(-1) free chlorine was present after 30 min contact time. The more effective degradation at higher pH was unexpected as chlorine is known to be a weaker oxidant under these conditions. The more effective degradation, then, must be due to the toxins, which are ionisable molecules, being present in a form at higher pH which is more susceptible to oxidation. The feasibility of using chlorine to remove saxitoxins during water treatment will therefore depend strongly on the pH of the water being chlorinated. Degradation may be improved by pH adjustment but may not be a practical solution. Although saxitoxins were degraded in that the parent compounds were not detected by chemical analysis, there is no indication as to the nature of the degradation products. However, acute toxicity as determined by the mouse bioassay was eliminated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fresh water cyanobacterium Anabaena circinalis produces saxitoxin (STX) and several other toxins with similar basic structural skeleton. Collectively, these toxins are known as Paralytic Shellfish Poisons or PSPs. These toxins are water soluble and can escape into the water body after cell lysis. The presence of these toxins in drinking water is a serious threat to human health. The present work has shown that Paralytic Shellfish Poisons (PSPs) in drinking water can be removed by chlorination at high pH (>9.0), provided a residual of 0.5 mg/L of free chlorine is present after 30 minutes of contact time.