96 resultados para Serviceability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epoxy adhesives are nowadays being extensively used in Civil Engineering applications, mostly in the scope of the rehabilitation of reinforced concrete (RC) structures. In this context, epoxy adhesives are used to provide adequate stress transference from fibre reinforced polymers (FRP) to the surrounding concrete substrate. Most recently, the possibility of using prestressed FRPs bonded with these epoxy adhesives is also being explored in order to maximize the potentialities of this strengthening approach. In this context, the understanding of the long term behaviour of the involved materials becomes essential. Even when non-prestressed FRPs are used a certain amount of stress is permanently applied on the adhesive interface during the serviceability conditions of the strengthened structure, and the creep of the adhesive may cause a continuous variation in the deformational response of the element. In this context, this paper presents a study aiming to experimentally characterize the tensile creep behaviour of an epoxy-based adhesive currently used in the strengthening of concrete structures with carbon FRP (CFRP) systems. To analytically describe the tensile creep behaviour, the modified Burgers model was fitted to the experimental creep curves, and the obtained results revealed that this model is capable of predicting with very good accuracy the long term behaviour of this material up to a sustained stress level of 60% of the adhesive’s tensile strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Degree of Doctor of Philosophy of Structural/Civil Engineering

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil (área de especialização em Estruturas e Geotecnia)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deterioration in portland cement concrete (PCC) pavements can occur due to distresses caused by a combination of traffic loads and weather conditions. Hot mix asphalt (HMA) overlay is the most commonly used rehabilitation technique for such deteriorated PCC pavements. However, the performance of these HMA overlaid pavements is hindered due to the occurrence of reflective cracking, resulting in significant reduction of pavement serviceability. Various fractured slab techniques, including rubblization, crack and seat, and break and seat are used to minimize reflective cracking by reducing the slab action. However, the design of structural overlay thickness for cracked and seated and rubblized pavements is difficult as the resulting structure is neither a “true” rigid pavement nor a “true” flexible pavement. Existing design methodologies use the empirical procedures based on the AASHO Road Test conducted in 1961. But, the AASHO Road Test did not employ any fractured slab technique, and there are numerous limitations associated with extrapolating its results to HMA overlay thickness design for fractured PCC pavements. The main objective of this project is to develop a mechanistic-empirical (ME) design approach for the HMA overlay thickness design for fractured PCC pavements. In this design procedure, failure criteria such as the tensile strain at the bottom of HMA layer and the vertical compressive strain on the surface of subgrade are used to consider HMA fatigue and subgrade rutting, respectively. The developed ME design system is also implemented in a Visual Basic computer program. A partial validation of the design method with reference to an instrumented trial project (IA-141, Polk County) in Iowa is provided in this report. Tensile strain values at the bottom of the HMA layer collected from the FWD testing at this project site are in agreement with the results obtained from the developed computer program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the spiraling cost of construction, coupled with inflation, engineers must develop and research new techniques to better utilize the public's dollar. One area i n which these new technologies must be researched is in the field of highway construction; more specifically, asphalt products. There are areas within the state of Iowa which do not have Class I aggregate readily available for asphalt concrete road construction. The cost of transporting higher quality aggregate specified in the "Standard Specifications for Highway and Bridge construction"' for construction projects is escalating on a yearly basis. Many counties will be squeezed out of the construction of new roadways if an alternative to the high costs is not identified. The same high costs will curtail adequate upkeep on the existing paved system and will result in decreased serviceability. For this reason, a product is needed to better utilize the local aggregates for road construction and maintenance. There i s a product on the market which the promoters claim will improve the prer?nt asphalt to such a degree as to "upgrade deficient aggregates" to the level they can be used in today's standard construction techniques. This product is "Chem-Crete Bitumen," a'kpecially refined asphalt" that was promoted by Chem-Crete Corporation of Menlo Park, California. Chemkrete Technologies, Inc. of Wickliffe, Ohio; a wholly owned subsidiary of the Lubrizol Corporation has since purchased the U.S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes a laboratory evaluation of three asphaltic concrete, plant produced mixtures containing Asphadur. The mixtures represent a type A asphaltic concrete and two type B asphaltic concretes. The type A and one of the type B mixtures were used in pavements and will be evaluated later for durability and serviceability. The second type B mixture was made only for laboratory testing. In each instance, control batches of the same mixtures but without Asphadur were made for comparison. Type A is a high type asphaltic concrete, requires a minimum of 65 percent crushed particles and is generally used for higher traffic volume roads. Type B is used for intermediate or lower traffic volumes and requires a minimum of 30 percent crushed particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa Department of Transportation has been determining a present serviceability index (PSI) on the primary highway system since 1968. A CHLOE profilometer has been used as the standard for calibrating the Roadmeters that do the system survey. The current Roadmeter, an IJK Iowa DOT developed unit, is not considered an acceptable Roadmeter for determining the FHWA required International Roughness Index (IRI). Iowa purchased a commercial version of the South Dakota type profile (SD Unit) to obtain IRI. This study was undertaken to correlate the IRI to the IJK Roadmeter and retire the Roadmeter. One hundred forty-seven pavement management sections (IPMS) were tested in June and July 1991 with both units. Correlation coefficients and standard error of estimates were: r' Std. Error PCC pavements 0.81 0.15 Composite pavements 0.71 0.18 ACC pavements 0.77 0.17 The correlation equations developed from this work will allow use of the IRI to predict the IJK Roadmeter response with sufficient accuracy. Trend analysis should also not be affected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa Department of Transportation (Iowa DOT) through the Highway Division is responsible for the design, construction and maintenance of roadways that will provide a high level of serviceability to the motorist. First, the motorist expects to be able to get where he wants to go, but now he also demands a minimum level of comfort. In the construction of new roadways, the public is quick to express dissatisfaction with rough pavements. The Highway Division of the Iowa DOT (formerly Iowa State Highway Commission) has a specification which requires a "smooth-riding surface". For over 40 years, new portland cement concrete (pcc) pavement has been checked with a 10-foot rolling straightedge. The contractor is required to grind, saw or mill off all high spots that deviate more than 1/8" from the 10-foot straight line. Unfortunately, there are instances where a roadway that will meet the above criteria does not provide a "smooth-riding surface". The roadway may have monger undulations (swales) that result in an undesirable ride. The objective of this project was to develop a repeatable, reliable time stable, lightweight test unit to measure the riding quality of pcc pavement at normal highway speed the day after construction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An asphalt concrete (ACC) overlay is most often the rehabilitative effort used to maintain the serviceability of either an ACC or PCC pavement. The major problem in durability of this ACC overlay comes from reflective cracking. These cracks usually open, allowing water to enter the unsealed crack and strip the ACC in the overlay. The stripping of the ACC allows accelerated deterioration at the crack. Two engineering fabrics were evaluated in this project in order to determine their effectiveness in reducing reflective cracking. These two materials are: PavePrep, Contech Construction Products, Inc., and Pro-Guard, Phillips Fiber Corporation. A 4.2 km (2.6 mi) roadway in Audubon County was selected for the research project. The roadway was divided into eight test sections. Four of the test sections are conventional resurfacing. The other four sections are split between the two engineering fabrics (two Pro-Guard and two PavePrep). A 75 mm (3 in.) thick overlay was placed over the entire project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The BPR type Roughometer has been used by the Iowa State Highway Commission since 1955 for the evaluation of the relative roughness of the various Iowa road surfaces. Since the commencement of this program, standardized information about the roughness of the various Iowa roads with respect to their type, construction, location and usage has been obtained. The Roughometer has also served to improve the economics and quality of road construction by making the roughness results of various practices available to all who are interested. In 1965, the Portland Cement Association developed a device known as the PCA Road Meter for measuring road roughness. Mounted in a regular passenger car, the Road Meter is a simple electromechanical device of durable construction which can perform consistently with extremely low maintenance. In 1967, the Iowa State Highway Commission's Laboratory constructed a P.C.A. type Road Meter in order to provide an efficient and reliable method for measuring the Present Serviceability Index for the state's highways. Another possibility was that after considerable testing the Road Meter might eventually replace the Roughometer. Some advantages of the Road Meter over the Roughometer are: (1) Road Meter tests are made by the automobile driver and one assistant without the need of traffic protection. The Roughometer has a crew of four men; two operating the roughometer and two driving safety vehicles. (2) The Road Meter is able to do more miles of testing because of its faster testing speed and the fa.ct that it is the only vehicle involved in the testing. (3) Because of the faster testing speed, the Road Meter gives a better indication of how the road actually rides to the average highway traveler. (4) The cost of operating a Road Meter is less than that of a Roughometer because of the fewer number of vehicles and men needed in testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa DOT has been correlating its roadmeters to the CHLOE Profilometer since 1968. The same test method for the Present Serviceability Index (PSI) deduction from the pavement condition (crack and patch) survey has also been used since 1968. Resulting PSI measurements on the Interstate and Primary Highway Systems have had good continuity through the years due to these test procedures. A computer program called PSITREND has been developed to plot PSI versus year tested for every rural pavement section in the State of Iowa. PSITREND provides pavement performance trends which are very useful for prediction of rehabilitation needs and for evaluation of new designs or rehabilitation techniques. The PSITREND data base should be maintained through future years to expand on nineteen years of historical PSI test information already collected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As of December 31, 1970 there were 57,270 miles of Local Secondary roads and 32,958 miles of Farm to Market roads in the Iowa secondary road system. The Local Secondary system carried a traffic load of 2,714,180 daily vehicle miles, accounting for 32% of all traffic in the secondary system. For all Local Secondary roads having some form of surfacing, 98% were surfaced with gravel or crushed stone. During the 1970 construction year 335 miles of surfaced roads were constructed in the Local Secondary system with 78% being surfaced with gravel or crushed stone. The total maintenance expenditure for all secondary roads in Iowa during 1970 amounted to $40,086,091. Of this, 42%, or $17,020,332, was spent for aggregate replacement on existing gravel or crushed stone roads with an additional 31% ($12,604,456) being spent on maintenance other than resurfacing. This amounts to 73% of the total maintenance budget and are the largest two maintenance expenditure items out of a list of 10 ranging from bridges to drainage assessments. The next largest item was 7%, for maintenance of existing flexible bases. Three concurrent phases of study were included in this project: (1) laboratory screenings studies of various additives thought to have potential for long-lasting dust palliation, soil additive strength, durability, and additive retention potential; (2) test road construction using those additives that indicated promise for performance-serviceability usage; and (3) observations and tests of constructed sections for evaluation of the additive's contribution to performance and serviceability as well as the relationship to initial costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combined study of dust control and low-cost surface improvements of soil and aggregate materials for immediate (and intermediate) use as a treated surface course is being conducted in three concurrent phases: (1) laboratory screening of various additives thought to have potential for long-lasting dust palliation, soil-additive strength, durability, and additive retention potential; (2) test road construction, using those additives from the screening studies that indicate promise for performance and serviceability; and (3) observation and tests of constructed sections for evaluation of the additive's contribution to performance and serviceability as well as relationship to initial costs. A brief review is presented of the problem, some methods of measuring it, previously adopted approaches to it, project field tests and a portion of the results thus far, and portions of the laboratory work accomplished in the screening studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete durability may be considered as the ability to maintain serviceability over the design life without significant deterioration, and is generally a direct function of the mixture permeability. Therefore, reducing permeability will improve the potential durability of a given mixture and, in turn, improve the serviceability and longevity of the structure. Given the importance of this property, engineers often look for methods that can decrease permeability. One approach is to add chemical compounds known as integral waterproofing admixtures or permeability-reducing admixtures, which help fill and block capillary pores in the paste. Currently, there are no standard approaches to evaluate the effectiveness of permeability-reducing admixtures or to compare different products in the US. A review of manufacturers’ data sheets shows that a wide range of test methods have been used, and rarely are the same tests used on more than one product. This study investigated the fresh and hardened properties of mixtures containing commercially available hydrophilic and hydrophobic types of permeability-reducing admixtures. The aim was to develop a standard test protocol that would help owners, engineers, and specifiers compare different products and to evaluate their effects on concrete mixtures that may be exposed to hydrostatic or non-hydrostatic pressure. In this experimental program, 11 concrete mixtures were prepared with a fixed water-to-cement ratio and cement content. One plain mixture was prepared as a reference, 5 mixtures were prepared using the recommended dosage of the different permeability-reducing admixtures, and 5 mixtures were prepared using double the recommended dosage. Slump, air content, setting time, compressive and flexural strength, shrinkage, and durability indicating tests including electrical resistivity, rapid chloride penetration, air permeability, permeable voids, and sorptivity tests were conducted at various ages. The data are presented and recommendations for a testing protocol are provided.