333 resultados para Sers, Phillipe
Resumo:
自表面增强Raman散射(SERS)在粗糙化的银电极上被首次发现以来,对于SERS的研究取得了很大的进展。主要集中在对SERS基底的构筑、SERS机理的解释以及SERS的应用方面,包括在表面科学及生物分析中的应用。本论文主要通过纳米合成及组装技术构筑了具有高活性、稳定性及重现性好的SERS基底,研究了SERS的电磁增强机理以及SERS在分子组装体与生物分析中的应用。关于SERS基底的构筑,我们主要合成了中空的银金纳米结构,在玻碳表面构筑了高SERS活性的银纳米簇、在水汽界面构筑了二维金纳米阵列及金纳米棒的聚集体膜作为SERS基底。我们还研究了处于金属纳米粒子-耦联分子-金属纳米粒子以及银纳米片-耦联分子-宏观金银两种三明治结构中耦联分子的SERS谱,得出存在于这两种三明治结构中的局域电磁耦合效应LSP-LSP (Localized Surface Plasmon)及LSP与宏观金银表面的表面等离子极化SPP (Surface Plamon Polartion)之间的电磁耦合效应,即LSP-SPP耦合。对于SERS的应用,我们首先研究了SERS在分子组装体方面的应用,得出分子在金属表面的吸附行为;同时利用SERS所具有的独特特征,分别研究了SERS在活体细胞以及构建适配子传感器方面的应用。具体工作如下: 1. SERS基底的构筑 采用种子调控的置换反应制备了中空的银金双金属纳米结构,研究了探针分子在其上的SERS效应; 采用静电组装的方法在玻碳表面构筑了具有SERS活性的银纳米簇;在水汽界面构筑了具有高SERS活性的二维金纳米阵列及金纳米棒的聚集体膜,同时研究了这些纳米结构作为SERS基底的特征。 2. SERS的电磁耦合增强机理 通过构筑金/银纳米粒子-耦联分子-银纳米粒子的三明治结构,研究了处于该结构中的耦联分子的SERS谱,得出存在于金银纳米粒子间的局域的表面等离子之间的耦合效应,即LSP-LSP电磁耦合;研究了处于宏观金/银-耦联分子-银纳米片的三明治结构中耦联分子的SERS谱,得出存在于这种三明治结构中的银纳米片的局域表面等离子共振与宏观金、银表面的表面等离子极化之间的电磁耦合效应,即LSP-SPP电磁耦合。 SERS在分子组装体方面的应用 首先通过SERS研究了硫醇类分子如4,4’-二巯基苯硫醚(4,4’-TBBT)在金表面的吸附,同时辅助其它表征手段如电化学、原子力等得出金属表面分子单层膜的吸附行为;通过SERS研究了该分子在银电极及银溶胶表面吸附行为的差异,得出该分子在银电极及银溶胶表面不同的吸附取向。 4. SERS在生物分析中的应用 利用SERS所具有的独特的特征,研究了染料分子在银纳米粒子上的SERS光谱及其作为光学探针在活体细胞中的应用;通过对纳米金进行适配子及Raman探针的标记构筑了对蛋白进行高灵敏度及选择性识别的SERS的适配子传感器。
Self-assembly of lambda-DNA networks/Ag nanoparticles: Hybrid architecture and active-SERS substrate
Resumo:
In this article, highly rough and stable surface enhanced Raman scattering (SERS)-active substrates had been fabricated by a facile layer by-layer technique. Unique lambda-DNA networks and CTAB capped silver nanoparticles (AgNP) were alternatively self-assembled on the charged mica surface until a desirable number of bilayers were reached. The as-prepared hybrid architectures were characterized by UV-vis spectroscopy, tapping mode atomic force microscopy (AFM) and confocal Raman microscopy, respectively.
Resumo:
A controllable silver nanoparticle aggregate system has been synthesized by adding different amounts of ethanol to cetyltrimethylammonium bromide (CTAB) capped silver nanoparticles (Ag-nps), which could be used as highly efficient surface-enhanced Raman scattering (SERS) active substrates. This ethanol-induced aggregation can be attributed to preferential dissolution of CTAB into ethanol, which leads a partial removal of the protective CTAB layer on Ag-nps. The optical and morphological properties of these aggregates under various volumes of ethanol were explored via UV-vis spectroscopy and atomic force microscopy.
Resumo:
In this article, a simple and novel photochemical synthesis of different gold nanostructures is proposed using solar radiation. This method is rapid, convenient and of low cost, and can be performed under ambient conditions. By adjusting the concentration of sodium acetate (NaAc), different morphologies of the products can be easily obtained. Without NaAc, the products obtained are mainly polyhedral gold particles; lower concentration of NaAc (0.05 and 0.1 M) accelerates the formation of flowerlike gold nanostructures; while higher concentration of NaAc (0.5 M) facilitates the formation of a variety of gold nanowires and nanobelts. It is found that the morphology change of gold nanaostructures is the result of the synergistic effect of poly(diallyl dimethylammonium) chloride (PDDA), Ac- ions, and the pH value. In addition, the different gold nanostructures thus obtained were used as substrates for surface-enhanced Raman scattering (SERS) with p-aminothiophenol (p-ATP) as the probe molecule.
Resumo:
In this paper, we have reported a very simple strategy (combined sonication with sol-gel techniques) for synthesizing well-defined silica-coated carbon nanotube (CNT) coaxial nanocable without prior CNT functionalization. After functionalization with NH2 group, the CNT/silica coaxial nanocable has been employed as a three-dimensional support for loading ultra-high-density metal or hybrid nanoparticles (NPs) such as gold NPs, Au/Pt hybrid NPs, Pt hollow NPs, and Au/Ag core/shell NPs. Most importantly, it is found that the ultra-high-density Au/Pt NPs supported on coaxial nanocables (UASCN) could be used as enhanced materials for constructing electrochemical devices with high performance. Four model probe molecules (O-2, CH3OH, H2O2, and NH2NH2) have been investigated on UASCN-modified glassy carbon electrode (GCE). It was observed that the present UASCN exhibited high electrocatalytic activity toward diverse molecules and was a promising electrocatalyst for constructing electrochemical devices with high performance. For instance, the detection limit for H2O2 with a signal-to-noise ratio of 3 was found to be 0.3 mu M, which was lower than certain enzyme-based biosensors.
Resumo:
SERS aptasensors for protein recognition based on Au nanoparticles labeled with aptamers and Raman reporters have been developed, which opens a new way for protein recognition of high sensitivity and selectivity.
Resumo:
Two-dimensional (2-D) gold networks were spontaneously formed at the air-water interface after HAuCl4 reacted with fructose at 90 degrees C in a sealed vessel, in a reaction in which fructose acted as both a reducing and a protecting agent. Through fine-tuning of the molar ratio of HAuCl4 to fructose, the thus-formed 2-D gold networks can be changed from a coalesced pattern to an interconnected pattern. In the coalesced pattern, some well-defined single-crystalline gold plates at the micrometer-scale could be seen, while in the interconnected pattern, many sub-micrometer particles and some irregular gold plates instead of well-defined gold plates appeared. It is also found that the 2-D gold networks in the form of an interconnected pattern can be used as substrates for surface-enhanced Raman scattering (SERS) because of the strong localized electromagnetic field produced by the gaps between the neighboring particles in the 2-D gold networks.
Resumo:
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4-aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS-based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80-100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 x 10(4) relative to silver colloid, which might have resulted from the presence of 'hot-spots' at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 x 10(7) by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface.
Resumo:
In this paper, the fabrication of an active surf ace-enhanced Raman scattering (SERS) substrate by self-assembled silver nanoparticles on a monolayer of 4-aminophenyl-group-modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4-aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping-mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p-aminothiophenol (p-ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10(-9) m. This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon-based materials for SERS with high sensitivity.