991 resultados para Sequential production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The experiment aimed to study the effect of physiological stress on cortisol levels, quality and quantity of milk through punctual administration of ACTH. Twelve Saanen goats were divided in two experimental groups: ACTH group (0,5 mu g of ACTH/Kg.L.W); Placebo group (placebo solution). Milk production, and percentages of protein, fat, lactose and SCC (somatic cells counting) of the milk were analyzed before, during and after the administration of ACTH/placebo. Simultaneously to the ACTH/placebo administration and during three sequential days, blood was collected to evaluate cortisol concentrations. At times -30 and zero, both groups presented basal concentrations of cortisol. The increase of cortisol contents was significant at times 60 (group ACTH: 59.00 +/- 5.70 and groups placebo: 5.23 +/- 1.37ng/mL) and 120 (group ACTH: 47.96 +/- 9.72 and group placebo: 4.38 +/- 1,14ng/mL) since the cortisol content was higher on the ACTH group. The values returned to the basal level at 300 minutes. Concerning milk production, no differences were found between ACTH and placebo groups. Milk, protein, fat, lactose and SCC did not distinguish one group from another. The results indicated that the physiological stress induced during three days was not harmful to milk production and milk quality of Saanen goats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluates the potential for using different effluents for simultaneous H-2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H-2 was produced from parboiled rice wastewater (23.9 mL g(-1) chemical oxygen demand [COD]) and vinasse (20.8 mL g(-1) COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3 mL g(-1) COD), followed by parboiled rice wastewater (115.5 mL g(-1) COD) and glycerol (180.1 mL g(-1) COD). The maximum amount of CH4 was observed for vinasse (255.4 mL g(-1) COD). The total energy recovery from vinasse (10.4 kJ g(-1) COD) corresponded to the maximum COD reduction (74.7 %), followed by glycerol (70.38 %, 7.20 kJ g(-1) COD), parboiled rice wastewater (63.91 %, 4.92 kJ g(-1) COD), and sewage (51.11 %, 1.85 kJ g(-1) COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H-2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H-2 and CH4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for the production of macrocyclic polystyrene via ring closing of a linear !,"-dibrominated polystyrene by an Atom Transfer Radical Coupling (ATRC) reaction is described. The dibrominated polystyrene chain was produced from two simultaneous atom transfer radical polymerizations (ATRPs) originating from a dibrominated benzal bromide initiator. To ensure the retention of the halogen end groups polymerization was allowed to proceed to less than 50% conversion. Using this precursor in an intramolecular ATRC (ring closing) reaction was found to yield in excess of 90% cyclic product based on refractive index-gel permeation chromatography (GPC) analysis. The cyclic architecture of the polymer was verified by GPC, Nuclear Magnetic Resonance (NMR), and mass spectrometry analysis. The utility of this method has been expanded by the addition of 2-methyl-2-nitrosopropane to the coupling reaction, which allows for the coupling to proceed at a faster rate and to yield macrocycles with incorporated alkoxyamine functionality. The alkoxyamine functionality allows for degradation of the cycles at high temperatures (>125° C) and we hypothesize that it may allow the macrocycles to act as a macroinitiator for a ring expansion polymerization in future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 90% of fine aerosol in the Midwestern United States has a regional component with a sizable fraction attributed to secondary production of organic aerosol (SOA). The Ozark Forest is an important source of biogenic SOA precursors like isoprene (> 150 mg m-2 d-1), monoterpenes (10-40 mg m-2 d-1), and sesquiterpenes (10-40 mg m-2d-1). Anthropogenic sources include secondary sulfate and nitrate and biomass burning (51-60%), vehicle emissions (17-26%), and industrial emissions (16-18%). Vehicle emissions are an important source of volatile and vapor-phase, semivolatile aliphatic and aromatic hydrocarbons that are important anthropogenic sources of SOA precursors. The short lifetime of SOA precursors and the complex mixture of functionalized oxidation products make rapid sampling, quantitative processing methods, and comprehensive organic molecular analysis essential elements of a comprehensive strategy to advance understanding of SOA formation pathways. Uncertainties in forecasting SOA production on regional scales are large and related to uncertainties in biogenic emission inventories and measurement of SOA yields under ambient conditions. This work presents a bottom-up approach to develop a conifer emission inventory based on foliar and cortical oleoresin composition, development of a model to estimate terpene and terpenoid signatures of foliar and bole emissions from conifers, development of processing and analytic techniques for comprehensive organic molecular characterization of SOA precursors and oxidation products, implementation of the high-volume sampling technique to measure OA and vapor-phase organic matter, and results from a 5 day field experiment conducted to evaluate temporal and diurnal trends in SOA precursors and oxidation products. A total of 98, 115, and 87 terpene and terpenoid species were identified and quantified in commercially available essential oils of Pinus sylvestris, Picea mariana, and Thuja occidentalis, respectively, by comprehensive, two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC × GC-ToF-MS). Analysis of the literature showed that cortical oleoresin composition was similar to foliar composition of the oldest branches. Our proposed conceptual model for estimation of signatures of terpene and terpenoid emissions from foliar and cortical oleoresin showed that emission potentials of the foliar and bole release pathways are dissimilar and should be considered for conifer species that develop resin blisters or are infested with herbivores or pathogens. Average derivatization efficiencies for Methods 1 and 2 were 87.9 and 114%, respectively. Despite the lower average derivatization efficiency of Method 1, distinct advantages included a greater certainty of derivatization yield for the entire suite of multi- and poly-functional species and fewer processing steps for sequential derivatization. Detection limits for Method 1 using GC × GC- ToF-MS were 0.09-1.89 ng μL-1. A theoretical retention index diagram was developed for a hypothetical GC × 2GC analysis of the complex mixture of SOA precursors and derivatized oxidation products. In general, species eluted (relative to the alkyl diester reference compounds) from the primary column (DB-210) in bands according to n and from the secondary columns (BPX90, SolGel-WAX) according to functionality, essentially making the GC × 2GC retention diagram a Carbon number-functionality grid. The species clustered into 35 groups by functionality and species within each group exhibited good separation by n. Average recoveries of n-alkanes and polyaromatic hydrocarbons (PAHs) by Soxhlet extraction of XAD-2 resin with dichloromethane were 80.1 ± 16.1 and 76.1 ± 17.5%, respectively. Vehicle emissions were the common source for HSVOCs [i.e., resolved alkanes, the unresolved complex mixture (UCM), alkylbenzenes, and 2- and 3-ring PAHs]. An absence of monoterpenes at 0600-1000 and high concentrations of monoterpenoids during the same period was indicative of substantial losses of monoterpenes overnight and the early morning hours. Post-collection, comprehensive organic molecular characterization of SOA precursors and products by GC × GC-ToFMS in ambient air collected with ~2 hr resolution is a promising method for determining biogenic and anthropogenic SOA yields that can be used to evaluate SOA formation models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest - hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues - according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% oftheoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure species results. Chapter 4 is an evaluation of the potential for producing Trichoderma reesei cellulose hydrolases in the Kluyveromyces lactis yeast expression system. The exoglucanases Cel6A and Cel7A, and the endoglucanase Cel7B were inserted separately into the K. lactis and the enzymes were analyzed for activity on various substrates. Recombinant Cel7B was found to be active on carboxymethyl cellulose and Avicel powdered cellulose substrates. Recombinant Cel6A was also found to be active on Avicel. Recombinant Cel7A was produced, but no enzymatic activity was detected on any substrate. Chapter 5 presents a new method for enzyme improvement studies using enzyme co-expression and yeast growth rate measurements as a potential high-throughput expression and screening system in K. lactis yeast. Two different K. lactis strains were evaluated for their usefulness in growth screening studies, one wild-type strain and one strain which has had the main galactose metabolic pathway disabled. Sequential transformation and co-expression of the exoglucanase Cel6A and endoglucanase Cel7B was performed, and improved hydrolysis rates on Avicel were detectable in the cell culture supernatant. Future work should focus on hydrolysis of natural substrates, developing the growth screening method, and utilizing the K. lactis expression system for directed evolution of enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Acute kidney injury (AKI) is common in dogs. Few studies have assessed sequential changes in indices of kidney function in dogs with naturally occurring AKI. OBJECTIVE To document sequential changes of conventional indices of renal function, to better define the course of AKI, and to identify a candidate marker for recovery. ANIMALS Ten dogs with AKI. METHODS Dogs were prospectively enrolled and divided into surviving and nonsurviving dogs. Urine production was measured with a closed system for 7 days. One and 24-hour urinary clearances were performed daily to estimate solute excretion and glomerular filtration rate (GFR). Solute excretion was calculated as an excretion ratio (ER) and fractional clearance (FC) based on both the 1- and 24-hour urine collections. RESULTS Four dogs survived and 6 died. At presentation, GFR was not significantly different between the outcome groups, but significantly (P = .03) increased over time in the surviving, but not in the nonsurviving dogs. Fractional clearance of Na decreased significantly over time (20.2-9.4%, P < .0001) in the surviving, but not in the nonsurviving dogs. The ER and FC of solutes were highly correlated (r, 0.70-0.95). CONCLUSION AND CLINICAL IMPACT Excretion ratio might be used in the clinical setting as a surrogate marker to follow trends in solute excretion. Increased GFR, urine production, and decreased FC of Na were markers of renal recovery. The FC of Na is a simple, noninvasive, and cost-effective method that can be used to evaluate recovery of renal function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Torulaspora delbrueckii is a non-Saccharomyces yeast with interesting metabolic and physiological properties of potential use in oenology. This work examines the fermentative behaviour of five strains of T. delbrueckii in sequential fermentations with Saccharomyces cerevisiae, analysing the formation of aromatic compounds, polyalcohols and pigments. The fermentative power of these five strains ranged between 7.6 and 9.0% v/v ethanol; the associated volatile acidity was 0.2e0.7 g/l acetic acid. The production of glycerol was inferior to that of S. cerevisiae alone. The mean 2,3-butanediol concentration reached in single-culture S. cerevisiae fermentations was 73% higher than in the five sequential T. delbrueckii/S. cerevisiae fermentations. However, these fermentations produced larger quantities of diacetyl, ethyl lactate and 2-phenylethyl acetate than single-culture S. cerevisiae fermentation. 3-ethoxy propanol was produced only in the sequential fermentations. The five sequential fermentations produced smaller quantities of vitisin A and B than single-culture S. cerevisiae fermentation. In tests performed prior to the addition of the S. cerevisiae in the sequential fermentations, none of the T. delbrueckii strains showed any extracellular hydroxycinnamate decarboxylase activity. They therefore produced no vinyl phenolic pyranoanthocyanins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Saturation mutagenesis is a powerful tool in modern protein engineering, which permits key residues within a protein to be targeted in order to potentially enhance specific functionalities. However, the creation of large libraries using conventional saturation mutagenesis with degenerate codons (NNN or NNK/S) has inherent redundancy and consequent disparities in codon representation. Therefore, both chemical (trinucleotide phosphoramidites) and biological methods (sequential, enzymatic single codon additions) of non-degenerate saturation mutagenesis have been developed in order to combat these issues and so improve library quality. Large libraries with multiple saturated positions can be limited by the method used to screen them. Although the traditional screening method of choice, cell-dependent methods, such as phage display, are limited by the need for transformation. A number of cell-free screening methods, such as CIS display, which link the screened phenotype with the encoded genotype, have the capability of screening libraries with up to 1014 members. This thesis describes the further development of ProxiMAX technology to reduce library codon bias and its integration with CIS display to screen the resulting library. Synthetic MAX oligonucleotides are ligated to an acceptor base sequence, amplified, and digested, subsequently adding a randomised codon to the acceptor, which forms an iterative cycle using the digested product of the previous cycle as the base sequence for the next. Initial use of ProxiMAX highlighted areas of the process where changes could be implemented in order to improve the codon representation in the final library. The refined process was used to construct a monomeric anti-NGF peptide library, based on two proprietary dimeric peptides (Isogenica) that bind NGF. The resulting library showed greatly improved codon representation that equated to a theoretical diversity of ~69%. The library was subsequently screened using CIS display and the discovered peptides assessed for NGF-TrkA inhibition by ELISA. Despite binding to TrkA, these peptides showed lower levels of inhibition of the NGF-TrkA interaction than the parental dimeric peptides, highlighting the importance of dimerization for inhibition of NGF-TrkA binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Movement strategies of small forage fish (<8 cm total length) between temporary and permanent wetland habitats affect their overall population growth and biomass concentrations, i.e., availability to predators. These fish are often the key energy link between primary producers and top predators, such as wading birds, which require high concentrations of stranded fish in accessible depths. Expansion and contraction of seasonal wetlands induce a sequential alternation between rapid biomass growth and concentration, creating the conditions for local stranding of small fish as they move in response to varying water levels. To better understand how landscape topography, hydrology, and fish behavior interact to create high densities of stranded fish, we first simulated population dynamics of small fish, within a dynamic food web, with different traits for movement strategy and growth rate, across an artificial, spatially explicit, heterogeneous, two-dimensional marsh slough landscape, using hydrologic variability as the driver for movement. Model output showed that fish with the highest tendency to invade newly flooded marsh areas built up the largest populations over long time periods with stable hydrologic patterns. A higher probability to become stranded had negative effects on long-term population size, and offset the contribution of that species to stranded biomass. The model was next applied to the topography of a 10 km × 10 km area of Everglades landscape. The details of the topography were highly important in channeling fish movements and creating spatiotemporal patterns of fish movement and stranding. This output provides data that can be compared in the future with observed locations of fish biomass concentrations, or such surrogates as phosphorus ‘hotspots’ in the marsh.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorus is an essential nutrient for life. In the ocean, phosphorus burial regulates marine primary production**1, 2. Phosphorus is removed from the ocean by sedimentation of organic matter, and the subsequent conversion of organic phosphorus to phosphate minerals such as apatite, and ultimately phosphorite deposits**3, 4. Bacteria are thought to mediate these processes**5, but the mechanism of sequestration has remained unclear. Here, we present results from laboratory incubations in which we labelled organic-rich sediments from the Benguela upwelling system, Namibia, with a 33P-radiotracer, and tracked the fate of the phosphorus. We show that under both anoxic and oxic conditions, large sulphide-oxidizing bacteria accumulate 33P in their cells, and catalyse the nearly instantaneous conversion of phosphate to apatite. Apatite formation was greatest under anoxic conditions. Nutrient analyses of Namibian upwelling waters and sediments suggest that the rate of phosphate-to-apatite conversion beneath anoxic bottom waters exceeds the rate of phosphorus release during organic matter mineralization in the upper sediment layers. We suggest that bacterial apatite formation is a significant phosphorus sink under anoxic bottom-water conditions. Expanding oxygen minimum zones are projected in simulations of future climate change**6, potentially increasing sequestration of marine phosphate, and restricting marine productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le cordon ombilical humain suscite beaucoup d’intérêt comme source de cellules à des fins de recherche et de thérapie. Quatre types cellulaires majeurs - les cellules épithéliales, stromales, musculaires lisses et endothéliales - composent les tissus solides du cordon ombilical. Quelques-uns de ces types cellulaires ont été utilisés en recherche scientifique depuis longtemps, alors que d’autres commencent à peine à dévoiler leur potentiel. Nous avons développé un protocole unique pour l’extraction séquentielle de tous ces types cellulaires d’un seul cordon ombilical, permettant ainsi la reconstruction à partir d’une même source. La combinaison des techniques de perfusion, immersion et explants a mené à la mise en culture et à l’expansion de ces cellules, dont les cellules épithéliales et les cellules stromales de la gelée de Wharton qui ont été caractérisées plus en détail par l’immunomarquage de protéines spécifiques. Leur potentiel pour la médecine régénératrice a été démontré par la production de tissus par génie tissulaire. Un vaisseau sanguin composé de cellules stromales et de cellules musculaires lisses du cordon ombilical démontra une résistance substantielle à l’éclatement. Les capacités de différenciation des cellules épithéliales ont été étudiées dans le contexte d’une peau bilamellaire reconstruite en combinaison avec des kératinocytes, des fibroblastes dermiques, et des cellules stromales de la gelée de Wharton. Les cellules épithéliales ont montré une différenciation similaire à celle des kératinocytes lorsque cultivées sur des fibroblastes dermiques et exposées à l’air, tandis que sur des cellules stromales du cordon, elles ont subi une désorganisation. Finalement, la différenciation des cellules stromales a été induite en culture vers plusieurs types cellulaires afin de compléter cette étude. L’ensemble des résultats fait ressortir l’importance non seulement de l’influence du milieu physique sur la croissance et la différenciation des cellules, mais également de l’impact de la provenance des cellules sur la qualité des tissus reconstruits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-dimensional propagation of a combustion wave through a premixed solid fuel for two-stage kinetics is studied. We re-examine the analysis of a single reaction travelling-wave and extend it to the case of two-stage reactions. We derive an expression for the travelling wave speed in the limit of large activation energy for both reactions. The analysis shows that when both reactions are exothermic, the wave structure is similar to the single reaction case. However, when the second reaction is endothermic, the wave structure can be significantly different from single reaction case. In particular, as might be expected, a travelling wave does not necessarily exist in this case. We establish conditions in the limiting large activation energy limit for the non-existence, and for monotonicity of the temperature profile in the travelling wave.