983 resultados para Semi-supervised clustering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

T.Boongoen and Q. Shen. Semi-Supervised OWA Aggregation for Link-Based Similarity Evaluation and Alias Detection. Proceedings of the 18th International Conference on Fuzzy Systems (FUZZ-IEEE'09), pp. 288-293, 2009. Sponsorship: EPSRC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new methodology for the prediction of scoliosis curve types from non invasive acquisitions of the back surface of the trunk is proposed. One hundred and fifty-nine scoliosis patients had their back surface acquired in 3D using an optical digitizer. Each surface is then characterized by 45 local measurements of the back surface rotation. Using a semi-supervised algorithm, the classifier is trained with only 32 labeled and 58 unlabeled data. Tested on 69 new samples, the classifier succeeded in classifying correctly 87.0% of the data. After reducing the number of labeled training samples to 12, the behavior of the resulting classifier tends to be similar to the reference case where the classifier is trained only with the maximum number of available labeled data. Moreover, the addition of unlabeled data guided the classifier towards more generalizable boundaries between the classes. Those results provide a proof of feasibility for using a semi-supervised learning algorithm to train a classifier for the prediction of a scoliosis curve type, when only a few training data are labeled. This constitutes a promising clinical finding since it will allow the diagnosis and the follow-up of scoliotic deformities without exposing the patient to X-ray radiations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One reason for semi-supervised clustering fail to deliver satisfactory performance in document clustering is that the transformed optimization problem could have many candidate solutions, but existing methods provide no mechanism to select a suitable one from all those candidates. This paper alleviates this problem by posing the same task as a soft-constrained optimization problem, and introduces the salient degree measure as an information guide to control the searching of an optimal solution. Experimental results show the effectiveness of the proposed method in the improvement of the performance, especially when the amount of priori domain knowledge is limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new semi-supervised method to effectively improve traffic classification performance when few supervised training data are available. Existing semi supervised methods label a large proportion of testing flows as unknown flows due to limited supervised information, which severely affects the classification performance. To address this problem, we propose to incorporate flow correlation into both training and testing stages. At the training stage, we make use of flow correlation to extend the supervised data set by automatically labeling unlabeled flows according to their correlation to the pre-labeled flows. Consequently, the traffic classifier has better performance due to the extended size and quality of the supervised data sets. At the testing stage, the correlated flows are identified and classified jointly by combining their individual predictions, so as to further boost the classification accuracy. The empirical study on the real-world network traffic shows that the proposed method outperforms the state-of-the-art flow statistical feature based classification methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graph plays an important role in graph-based semi-supervised classification. However, due to noisy and redundant features in high-dimensional data, it is not a trivial job to construct a well-structured graph on high-dimensional samples. In this paper, we take advantage of sparse representation in random subspaces for graph construction and propose a method called Semi-Supervised Classification based on Subspace Sparse Representation, SSC-SSR in short. SSC-SSR first generates several random subspaces from the original space and then seeks sparse representation coefficients in these subspaces. Next, it trains semi-supervised linear classifiers on graphs that are constructed by these coefficients. Finally, it combines these classifiers into an ensemble classifier by minimizing a linear regression problem. Unlike traditional graph-based semi-supervised classification methods, the graphs of SSC-SSR are data-driven instead of man-made in advance. Empirical study on face images classification tasks demonstrates that SSC-SSR not only has superior recognition performance with respect to competitive methods, but also has wide ranges of effective input parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of email classification is to classify user emails into spam and legitimate ones. Many supervised learning algorithms have been invented in this domain to accomplish the task, and these algorithms require a large number of labeled training data. However, data labeling is a labor intensive task and requires in-depth domain knowledge. Thus, only a very small proportion of the data can be labeled in practice. This bottleneck greatly degrades the effectiveness of supervised email classification systems. In order to address this problem, in this work, we first identify some critical issues regarding supervised machine learning-based email classification. Then we propose an effective classification model based on multi-view disagreement-based semi-supervised learning. The motivation behind the attempt of using multi-view and semi-supervised learning is that multi-view can provide richer information for classification, which is often ignored by literature, and semi-supervised learning supplies with the capability of coping with labeled and unlabeled data. In the evaluation, we demonstrate that the multi-view data can improve the email classification than using a single view data, and that the proposed model working with our algorithm can achieve better performance as compared to the existing similar algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concept drift is a problem of increasing importance in machine learning and data mining. Data sets under analysis are no longer only static databases, but also data streams in which concepts and data distributions may not be stable over time. However, most learning algorithms produced so far are based on the assumption that data comes from a fixed distribution, so they are not suitable to handle concept drifts. Moreover, some concept drifts applications requires fast response, which means an algorithm must always be (re) trained with the latest available data. But the process of labeling data is usually expensive and/or time consuming when compared to unlabeled data acquisition, thus only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are also based on the assumption that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenge in machine learning. Recently, a particle competition and cooperation approach was used to realize graph-based semi-supervised learning from static data. In this paper, we extend that approach to handle data streams and concept drift. The result is a passive algorithm using a single classifier, which naturally adapts to concept changes, without any explicit drift detection mechanism. Its built-in mechanisms provide a natural way of learning from new data, gradually forgetting older knowledge as older labeled data items became less influent on the classification of newer data items. Some computer simulation are presented, showing the effectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-supervised learning is applied to classification problems where only a small portion of the data items is labeled. In these cases, the reliability of the labels is a crucial factor, because mislabeled items may propagate wrong labels to a large portion or even the entire data set. This paper aims to address this problem by presenting a graph-based (network-based) semi-supervised learning method, specifically designed to handle data sets with mislabeled samples. The method uses teams of walking particles, with competitive and cooperative behavior, for label propagation in the network constructed from the input data set. The proposed model is nature-inspired and it incorporates some features to make it robust to a considerable amount of mislabeled data items. Computer simulations show the performance of the method in the presence of different percentage of mislabeled data, in networks of different sizes and average node degree. Importantly, these simulations reveals the existence of the critical points of the mislabeled subset size, below which the network is free of wrong label contamination, but above which the mislabeled samples start to propagate their labels to the rest of the network. Moreover, numerical comparisons have been made among the proposed method and other representative graph-based semi-supervised learning methods using both artificial and real-world data sets. Interestingly, the proposed method has increasing better performance than the others as the percentage of mislabeled samples is getting larger. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both Semi-Supervised Leaning and Active Learning are techniques used when unlabeled data is abundant, but the process of labeling them is expensive and/or time consuming. In this paper, those two machine learning techniques are combined into a single nature-inspired method. It features particles walking on a network built from the data set, using a unique random-greedy rule to select neighbors to visit. The particles, which have both competitive and cooperative behavior, are created on the network as the result of label queries. They may be created as the algorithm executes and only nodes affected by the new particles have to be updated. Therefore, it saves execution time compared to traditional active learning frameworks, in which the learning algorithm has to be executed several times. The data items to be queried are select based on information extracted from the nodes and particles temporal dynamics. Two different rules for queries are explored in this paper, one of them is based on querying by uncertainty approaches and the other is based on data and labeled nodes distribution. Each of them may perform better than the other according to some data sets peculiarities. Experimental results on some real-world data sets are provided, and the proposed method outperforms the semi-supervised learning method, from which it is derived, in all of them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concept drift, which refers to non stationary learning problems over time, has increasing importance in machine learning and data mining. Many concept drift applications require fast response, which means an algorithm must always be (re)trained with the latest available data. But the process of data labeling is usually expensive and/or time consuming when compared to acquisition of unlabeled data, thus usually only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are based on assumptions that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenging task in machine learning. Recently, a particle competition and cooperation approach has been developed to realize graph-based semi-supervised learning from static data. We have extend that approach to handle data streams and concept drift. The result is a passive algorithm which uses a single classifier approach, naturally adapted to concept changes without any explicit drift detection mechanism. It has built-in mechanisms that provide a natural way of learning from new data, gradually "forgetting" older knowledge as older data items are no longer useful for the classification of newer data items. The proposed algorithm is applied to the KDD Cup 1999 Data of network intrusion, showing its effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relevance feedback approaches have been established as an important tool for interactive search, enabling users to express their needs. However, in view of the growth of multimedia collections available, the user efforts required by these methods tend to increase as well, demanding approaches for reducing the need of user interactions. In this context, this paper proposes a semi-supervised learning algorithm for relevance feedback to be used in image retrieval tasks. The proposed semi-supervised algorithm aims at using both supervised and unsupervised approaches simultaneously. While a supervised step is performed using the information collected from the user feedback, an unsupervised step exploits the intrinsic dataset structure, which is represented in terms of ranked lists of images. Several experiments were conducted for different image retrieval tasks involving shape, color, and texture descriptors and different datasets. The proposed approach was also evaluated on multimodal retrieval tasks, considering visual and textual descriptors. Experimental results demonstrate the effectiveness of the proposed approach.