956 resultados para Semi-Regenerative Process
Resumo:
Homologous DNA recombination is a fundamental, regenerative process within living organisms. However, in most organisms, homologous recombination is a rare event, requiring a complex set of reactions and extensive homology. We demonstrate in this paper that Beta protein of phage λ generates recombinants in chromosomal DNA by using synthetic single-stranded DNAs (ssDNA) as short as 30 bases long. This ssDNA recombination can be used to mutagenize or repair the chromosome with efficiencies that generate up to 6% recombinants among treated cells. Mechanistically, it appears that Beta protein, a Rad52-like protein, binds and anneals the ssDNA donor to a complementary single-strand near the DNA replication fork to generate the recombinant. This type of homologous recombination with ssDNA provides new avenues for studying and modifying genomes ranging from bacterial pathogens to eukaryotes. Beta protein and ssDNA may prove generally applicable for repairing DNA in many organisms.
Resumo:
Microalgas são organismos unicelulares, eucariontes, fotossintetizantes e eficientes fixadores de gás carbônico que apresentam grande potencial para produção de ácidos graxos além de pigmentos, como os carotenóides e a clorofila, de interesse nas indústrias de alimentos, química, farmacêutica e de cosméticos. Dentre as microalgas, o microrganismo Ankistrodesmus braunii vem sendo citado como capaz de produzir grandes quantidades de lipídios, podendo corresponder a até 73% de sua massa seca, com produção de ácidos graxos insaturados, como o ácido linolênico. Esse microrganismo se destaca do ponto de vista industrial por poder ser conduzido em reatores e em meios de cultivo complexos. As fontes de nitrogênio, as concentrações empregadas destes nutrientes, bem como o tipo de processo de cultivo interferem na composição de biomassas fotossintetizantes. O uso de reatores tubulares tem sido estudado e tem se apresentado interessante por permitir a obtenção de altas concentrações celulares. Nesse sentido, este trabalho teve a finalidade de estudar o crescimento de Ankistrodesmus braunii em reator tubular com uso de diferentes quantidades de nitrato de sódio por processos descontínuo, descontínuo alimentado e semi-contínuo. Nos cultivos descontínuos, a máxima concentração celular (Xm) encontrada foi de 1588 ± 11 mg.L-1 com uso de 20 mM de NaNO3. O uso do processo descontínuo alimentado, o qual teve adição de 20 mM de NaNO3 feito num intervalo a cada 48 horas sendo iniciada a adição no primeiro dia, permitiu a obtenção de Xm = 2753 ± 7 mg.L-1; porém não foi possível eliminar a fase lag do cultivo, levando a uma produtividade em células (Px) de 351 ± 1 mg.L-1.dia-1. O processo semi-contínuo foi eficiente para eliminar a fase lag do cultivo, permitindo a obtenção de Xm = 2399 ± 5 mg.L-1 e um aumento de até 50% em Px, que chegou a valores de 525 ± 1 mg.L-1.dia-1 em cultivos com uso de 20 mM de NaNO3. Nesta condição os teores de proteínas e lipídios nas biomassas foram de 34,8 ± 0,2% e 38,6 ± 0,2%, respectivamente. Foi observado que, independentemente do tipo de processo empregado, há um decréscimo do valor do fator de conversão de nitrogênio em células (YX/N) com o aumento da adição de NaNO3. O maior valor de YX/N foi obtido no experimento com processo semi-contínuo e uso de 2 mM de NaNO3 no meio de cultivo, com valor médio de 29,1 ± 0,1 mg mg-1 ao final do segundo ciclo. Porém, nesta condição, o teor de proteínas da biomassa foi de 17,3 ± 0,4%. Já os maiores valores de YX/N encontrados nos processos descontínuo e descontínuo alimentado foram, respectivamente, de 22,5 ± 1,6 e 7,1 ± 0,1 mg mg-1. Os resultados obtidos neste trabalho evidenciam o potencial de Ankistrodesmus braunii como fonte de proteínas e lipídios para uso industrial.
Resumo:
The ability to identify and manipulate stem cells has been a significant advancement in regenerative medicine and has contributed to the development of tissue engineering-based clinical therapies. Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques such as tissue engineering need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. One of the critical requirements for a tissue engineering approach is the delivery of ex vivo expanded progenitor populations or the mobilization of endogenous progenitor cells capable of proliferating and differentiating into the required tissues. By definition, stem cells fulfill these requirements and the recent identification of stem cells within the periodontal ligament represents a significant development in the progress toward predictable periodontal regeneration. In order to explore the importance of stem cells in periodontal wound healing and regeneration, this review will examine contemporary concepts in stem cell biology, the role of periodontal ligament progenitor cells in the regenerative process, recent developments in identifying periodontal stem cells and the clinical implications of these findings.
Resumo:
The identification and quantification of spin adducts and their reduction products (>NOH, >NOR) formed from nitroso compounds and nitrones in EPR and PP during spin trapping techniques have been examined. The nitroxyl yield and polymer bound nitroxyl percentage formed from these spin traps were found to be strongly dependent on the nature of spin trap and radical generator, processing temperature, and irradiation time. The nitroxyl yield and % bound nitroxyl of the spin traps improved significantly in the presence of Trigonox 101 and 2-0H benzophenone. The effect of these spin traps used as normal additive and their spin adducts in the form of EPR-masterbatch on the photo and thermal-oxidation of PP have been studied. Aliphatic nitroso compounds were found to have much better photo-antioxidant activity than nitrones and aromatic nitroso compounds, and their antioxidant activity improved appreciably in the presence of, a free radical generator, Trigonox 101, before and after extraction. The effect of heat, light and oxidising agent (meta-dichloro per benzoic acid) on the nitroxyl yield of nitroso tertiary butane in solution as a model study has been investigated and a cyclic regenerative process involving both chain breaking acceptor and chain breaking donor process has been proposed.
Resumo:
Марусия Н. Славчова-Божкова - В настоящата работа се обобщава една гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта на частиците с два типа имиграция. Целта е да се обобщи аналогичен резултат в едномерния случай като се прилагат “coupling” метода, теория на възстановяването и регенериращи процеси.
Resumo:
2000 Mathematics Subject Classi cation: 60K25 (primary); 60F05, 37A50 (secondary)
Resumo:
Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.
Resumo:
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Resumo:
The methane hydration process is investigated in a semi-continuous stirred tank reactor. Liquid temperatures and reaction rates without stirrer are compared with those occurring with stirrer, while at the same time better stirring conditions of the methane hydration process are given by the experiments. Some basic data of fluid mechanics, for example, stirring Reynolds number, Froucle number and stirrer power, are calculated during the methane hydration process, which can be applied to evaluate stirrer capacity and provide some basic data for a scaled up reactor. Based on experiment and calculations in this work, some conclusions are drawn. First, the stirrer has great influence on the methane hydration process. Batch stirring is helpful to improve the mass transfer and heat transfer performances of the methane hydration process. Second, induction time can be shortened effectively by use of the stirrer. Third, in this paper, the appropriate stirring velocity and stirring time were 320 rpm and 30 min, respectively, at 5.0 MPa, for which the storage capacity and reaction time were 159.1 V/V and 370 min, respectively. Under the condition of the on-flow state, the initial stirring Reynolds number of the fluid and the stirring power were 12,150 and 0.54 W, respectively. Fourth, some suggestions, for example, the use of another type of stirrer or some baffles, are proposed to accelerate the methane hydration process. Comparing with literature data, higher storage capacity and hydration rate are achieved in this work. Moreover, some fluid mechanics parameters are calculated, which can provide some references to engineering application.
Resumo:
This paper refers to the assessment on site by semi-destructive testing (SDT) methods of the consolidation efficiency of a conservation process developed by Henriques (2011) for structural and non-structural pine wood elements in service. This study was applied on scots pine wood (Pinus sylvestris L.) degraded by fungi after treatment with a biocidal product followed by consolidation with a polymeric product. This solution avoids substitutions of wood moderately degraded by fungi, improving its physical and mechanical characteristics. The consolidation efficiency was assessed on site by methods of drill resistance and penetration resistance. The SDT methods used showed good sensitivity to the conservation process and could evaluate their effectiveness. (C) 2015 Elsevier Ltd. All rights reserved.