925 resultados para Semantic Web, Exploratory Search, Recommendation Systems
Resumo:
Semantic Web Service, one of the most significant research areas within the Semantic Web vision, has attracted increasing attention from both the research community and industry. The Web Service Modelling Ontology (WSMO) has been proposed as an enabling framework for the total/partial automation of the tasks (e.g., discovery, selection, composition, mediation, execution, monitoring, etc.) involved in both intra- and inter-enterprise integration of Web services. To support the standardisation and tool support of WSMO, a formal model of the language is highly desirable. As several variants of WSMO have been proposed by the WSMO community, which are still under development, the syntax and semantics of WSMO should be formally defined to facilitate easy reuse and future development. In this paper, we present a formal Object-Z formal model of WSMO, where different aspects of the language have been precisely defined within one unified framework. This model not only provides a formal unambiguous model which can be used to develop tools and facilitate future development, but as demonstrated in this paper, can be used to identify and eliminate errors present in existing documentation.
Resumo:
In this paper we propose algorithms for combining and ranking answers from distributed heterogeneous data sources in the context of a multi-ontology Question Answering task. Our proposal includes a merging algorithm that aggregates, combines and filters ontology-based search results and three different ranking algorithms that sort the final answers according to different criteria such as popularity, confidence and semantic interpretation of results. An experimental evaluation on a large scale corpus indicates improvements in the quality of the search results with respect to a scenario where the merging and ranking algorithms were not applied. These collective methods for merging and ranking allow to answer questions that are distributed across ontologies, while at the same time, they can filter irrelevant answers, fuse similar answers together, and elicit the most accurate answer(s) to a question.
Resumo:
This paper presents our Semantic Web portal infrastructure, which focuses on how to enhance knowledge access in traditional Web portals by gathering and exploiting semantic metadata. Special attention is paid to three important issues that affect the performance of knowledge access: i) high quality metadata acquisition, which concerns how to ensure high quality while gathering semantic metadata from heterogeneous data sources; ii) semantic search, which addresses how to meet the information querying needs of ordinary end users who are not necessarily familiar with the problem domain or the supported query language; and iii) semantic browsing, which concerns how to help users understand and explore the problem domain.
Resumo:
The Semantic Web (SW) offers an opportunity to develop novel, sophisticated forms of question answering (QA). Specifically, the availability of distributed semantic markup on a large scale opens the way to QA systems which can make use of such semantic information to provide precise, formally derived answers to questions. At the same time the distributed, heterogeneous, large-scale nature of the semantic information introduces significant challenges. In this paper we describe the design of a QA system, PowerAqua, designed to exploit semantic markup on the web to provide answers to questions posed in natural language. PowerAqua does not assume that the user has any prior information about the semantic resources. The system takes as input a natural language query, translates it into a set of logical queries, which are then answered by consulting and aggregating information derived from multiple heterogeneous semantic sources.
Resumo:
As the Semantic Web is an open, complex and constantly evolving medium, it is the norm, but not exception that information at different sites is incomplete or inconsistent. This poses challenges for the engineering and development of agent systems on the Semantic Web, since autonomous software agents need to understand, process and aggregate this information. Ontology language OWL provides core language constructs to semantically markup resources on the Semantic Web, on which software agents interact and cooperate to accomplish complex tasks. However, as OWL was designed on top of (a subset of) classic predicate logic, it lacks the ability to reason about inconsistent or incomplete information. Belief-augmented Frames (BAF) is a frame-based logic system that associates with each frame a supporting and a refuting belief value. In this paper, we propose a new ontology language Belief-augmented OWL (BOWL) by integrating OWL DL and BAF to incorporate the notion of confidence. BOWL is paraconsistent, hence it can perform useful reasoning services in the presence of inconsistencies and incompleteness. We define the abstract syntax and semantics of BOWL by extending those of OWL. We have proposed reasoning algorithms for various reasoning tasks in the BOWL framework and we have implemented the algorithms using the constraint logic programming framework. One example in the sensor fusion domain is presented to demonstrate the application of BOWL.
Resumo:
The paper discusses some current trends in the area of development and use of semantic portals for accessing heterogeneous museum collections on the Semantic Web. The presentation is focused on some issues concerning metadata standards for museums, museum collections ontologies and semantic search engines. A number of design considerations and recommendations are formulated.
Resumo:
Personal archives are the archives created by individuals for their own purposes. Among these are the library and documentary collections of writers and scholars. It is only recently that archival literature has begun to focus on this category of archives, emphasising how their heterogeneous nature necessitates the conciliation of different approaches to archival description, and calling for a broader understanding of the principle of provenance, recognising that multiple creators, including subsequent researchers, can contribute to shaping personal archives over time by adding new layers of contexts. Despite these advances in the theoretical debate, current architectures for archival representation remain behind. Finding aids privilege a single point of view and do not allow subsequent users to embed their own, potentially conflicting, readings. Using semantic web technologies this study aims to define a conceptual model for writers' archives based on existing and widely adopted models in the cultural heritage and humanities domains. The model developed can be used to represent different types of documents at various levels of analysis, as well as record content and components. It also enables the representation of complex relationships and the incorporation of additional layers of interpretation into the finding aid, transforming it from a static search tool into a dynamic research platform. The personal archive and library of Giuseppe Raimondi serves as a case study for the creation of an archival knowledge base using the proposed conceptual model. By querying the knowledge graph through SPARQL, the effectiveness of the model is evaluated. The results demonstrate that the model addresses the primary representation challenges identified in archival literature, from both a technological and methodological standpoint. The ultimate goal is to bring the output par excellence of archival science, i.e. the finding aid, more in line with the latest developments in archival thinking.
Resumo:
Recommendation systems have been growing in number for the last fifteen years. To evolve and adapt to the demands of the actual society, many paradigms emerged giving birth to even more paradigms and hybrid approaches. Mobile devices have also been under an incredible growth rate in every business area, and there are already lots of mobile based systems to assist tourists. This explosive growth gave birth to different mobile applications, each having their own advantages and disadvantages. Since recommendation and mobile systems might as well be integrated, this work intends to present the current state of the art in tourism mobile and recommendation systems, as well as to state their advantages and disadvantages.
Resumo:
Dissertação para obtenção do Grau de Doutor em Informática
Resumo:
The increasing number of television channels, on-demand services and online content, is expected to contribute to a better quality of experience for a costumer of such a service. However, the lack of efficient methods for finding the right content, adapted to personal interests, may lead to a progressive loss of clients. In such a scenario, recommendation systems are seen as a tool that can fill this gap and contribute to the loyalty of users. Multimedia content, namely films and television programmes are usually described using a set of metadata elements that include the title, a genre, the date of production, and the list of directors and actors. This paper provides a deep study on how the use of different metadata elements can contribute to increase the quality of the recommendations suggested. The analysis is conducted using Netflix and Movielens datasets and aspects such as the granularity of the descriptions, the accuracy metric used and the sparsity of the data are taken into account. Comparisons with collaborative approaches are also presented.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Ontologies formalized by means of Description Logics (DLs) and rules in the form of Logic Programs (LPs) are two prominent formalisms in the field of Knowledge Representation and Reasoning. While DLs adhere to the OpenWorld Assumption and are suited for taxonomic reasoning, LPs implement reasoning under the Closed World Assumption, so that default knowledge can be expressed. However, for many applications it is useful to have a means that allows reasoning over an open domain and expressing rules with exceptions at the same time. Hybrid MKNF knowledge bases make such a means available by formalizing DLs and LPs in a common logic, the Logic of Minimal Knowledge and Negation as Failure (MKNF). Since rules and ontologies are used in open environments such as the Semantic Web, inconsistencies cannot always be avoided. This poses a problem due to the Principle of Explosion, which holds in classical logics. Paraconsistent Logics offer a solution to this issue by assigning meaningful models even to contradictory sets of formulas. Consequently, paraconsistent semantics for DLs and LPs have been investigated intensively. Our goal is to apply the paraconsistent approach to the combination of DLs and LPs in hybrid MKNF knowledge bases. In this thesis, a new six-valued semantics for hybrid MKNF knowledge bases is introduced, extending the three-valued approach by Knorr et al., which is based on the wellfounded semantics for logic programs. Additionally, a procedural way of computing paraconsistent well-founded models for hybrid MKNF knowledge bases by means of an alternating fixpoint construction is presented and it is proven that the algorithm is sound and complete w.r.t. the model-theoretic characterization of the semantics. Moreover, it is shown that the new semantics is faithful w.r.t. well-studied paraconsistent semantics for DLs and LPs, respectively, and maintains the efficiency of the approach it extends.
Resumo:
This document is a journey through Semantic Web principles and Microsoft SharePoint in order to come to understand some advantages and disadvantages of theirs, and how Semantic Web principles can be blended into an enterprise solution like Microsoft SharePoint.
Resumo:
In the past, research in ontology learning from text has mainly focused on entity recognition, taxonomy induction and relation extraction. In this work we approach a challenging research issue: detecting semantic frames from texts and using them to encode web ontologies. We exploit a new generation Natural Language Processing technology for frame detection, and we enrich the frames acquired so far with argument restrictions provided by a super-sense tagger and domain specializations. The results are encoded according to a Linguistic MetaModel, which allows a complete translation of lexical resources and data acquired from text, enabling custom transformations of the enriched frames into modular ontology components.
Resumo:
L'objectiu és desenvolupar i avaluar una sèrie de components de l'arquitectura de la informació per a la web semàntica. Aquest components són genèrics i permeten als usuaris explorar conjunts de dades semàntiques sense necessitat de conèixer l'estructura ni tenir coneixements tècnics. S'ha desenvolupat seguint una metodologia de disseny centrat en l'usuari