929 resultados para Semantic Uncertainty
Resumo:
This paper describes the formalization and application of a methodology to evaluate the safety benefit of countermeasures in the face of uncertainty. To illustrate the methodology, 18 countermeasures for improving safety of at grade railroad crossings (AGRXs) in the Republic of Korea are considered. Akin to “stated preference” methods in travel survey research, the methodology applies random selection and laws of large numbers to derive accident modification factor (AMF) densities from expert opinions. In a full Bayesian analysis framework, the collective opinions in the form of AMF densities (data likelihood) are combined with prior knowledge (AMF density priors) for the 18 countermeasures to obtain ‘best’ estimates of AMFs (AMF posterior credible intervals). The countermeasures are then compared and recommended based on the largest safety returns with minimum risk (uncertainty). To the author's knowledge the complete methodology is new and has not previously been applied or reported in the literature. The results demonstrate that the methodology is able to discern anticipated safety benefit differences across candidate countermeasures. For the 18 at grade railroad crossings considered in this analysis, it was found that the top three performing countermeasures for reducing crashes are in-vehicle warning systems, obstacle detection systems, and constant warning time systems.
Resumo:
In this paper we describe a Semantic Grid application designed to enable museums and indigenous communities in distributed locations, to collaboratively discuss, describe and annotate digital objects and documents in museums that originally belonged to or are of cultural or historical significance to indigenous groups. By extending and refining an existing application, Vannotea, we enable users on access grid nodes to collaboratively attach descriptive, rights and tribal care metadata and annotations to digital images, video or 3D representations. The aim is to deploy the software within museums to enable the traditional owners to describe and contextualize museum content in their own words and from their own perspectives. This sharing and exchange of knowledge will hopefully revitalize cultures eroded through colonization and globalization and repair and strengthen relationships between museums and indigenous communities.
Resumo:
Consider a person searching electronic health records, a search for the term ‘cracked skull’ should return documents that contain the term ‘cranium fracture’. A information retrieval systems is required that matches concepts, not just keywords. Further more, determining relevance of a query to a document requires inference – its not simply matching concepts. For example a document containing ‘dialysis machine’ should align with a query for ‘kidney disease’. Collectively we describe this problem as the ‘semantic gap’ – the difference between the raw medical data and the way a human interprets it. This paper presents an approach to semantic search of health records by combining two previous approaches: an ontological approach using the SNOMED CT medical ontology; and a distributional approach using semantic space vector space models. Our approach will be applied to a specific problem in health informatics: the matching of electronic patient records to clinical trials.
Resumo:
In computational linguistics, information retrieval and applied cognition, words and concepts are often represented as vectors in high dimensional spaces computed from a corpus of text. These high dimensional spaces are often referred to as Semantic Spaces. We describe a novel and efficient approach to computing these semantic spaces via the use of complex valued vector representations. We report on the practical implementation of the proposed method and some associated experiments. We also briefly discuss how the proposed system relates to previous theoretical work in Information Retrieval and Quantum Mechanics and how the notions of probability, logic and geometry are integrated within a single Hilbert space representation. In this sense the proposed system has more general application and gives rise to a variety of opportunities for future research.
Resumo:
To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments.
Resumo:
From a ‘cultural science’ perspective, this paper traces one aspect of a more general shift, from the realist representational regime of modernity to the productive DIY systems of the internet era. It argues that collecting and archiving is transformed by this change. Modern museums – and also broadcast television – were based on determinist or ‘essence’ theory; while internet archives like YouTube (and the internet as an archive) are based on ‘probability’ theory. The paper goes through the differences between modernist ‘essence’ and postmodern ‘probability’; starting from the obvious difference that in a museum each object is selected by experts for its intrinsic properties, while on the internet you don’t know what you will find. The status of individual objects is uncertain, although the productivity of the overall archive is unlimited. The paper links these differences with changes in contemporary culture – from a Newtonian to a quantum universe, progress to risk, institutional structure to evolutionary change, objectivity to uncertainty, identity to performance. Borrowing some of its methodology from science fiction, the paper uses examples from museums and online archives, ranging from the oldest stone tool in the world to the latest tribute vid on the net.
Resumo:
The 27-item Intolerance of Uncertainty Scale (IUS) has become one of the most frequently used measure of Intolerance of Uncertainty. More recently, an abridged, 12-item version of the IUS has been developed. The current research used clinical (n = 50) and non-clinical (n = 56) samples to examine and compare the psychometric properties of both versions of the IUS. The two scales showed good internal consistency at both the total and subscale level and had satisfactory test-retest reliability. Both versions were correlated with worry and trait anxiety and had satisfactory concurrent validity. Significant differences between the scores of the clinical and non-clinical sample supported discriminant validity. Predictive validity was also supported for the two scales. Total scores, in the case of the clinical sample, and a subscale, in the case of the non-clinical sample, significantly predicted pathological worry and trait anxiety. Overall, the clinicians and researchers can use either version of the IUS with confidence, due to their sound psychometric properties.
Resumo:
We define a semantic model for purpose, based on which purpose-based privacy policies can be meaningfully expressed and enforced in a business system. The model is based on the intuition that the purpose of an action is determined by its situation among other inter-related actions. Actions and their relationships can be modeled in the form of an action graph which is based on the business processes in a system. Accordingly, a modal logic and the corresponding model checking algorithm are developed for formal expression of purpose-based policies and verifying whether a particular system complies with them. It is also shown through various examples, how various typical purpose-based policies as well as some new policy types can be expressed and checked using our model.
Resumo:
Modern statistical models and computational methods can now incorporate uncertainty of the parameters used in Quantitative Microbial Risk Assessments (QMRA). Many QMRAs use Monte Carlo methods, but work from fixed estimates for means, variances and other parameters. We illustrate the ease of estimating all parameters contemporaneously with the risk assessment, incorporating all the parameter uncertainty arising from the experiments from which these parameters are estimated. A Bayesian approach is adopted, using Markov Chain Monte Carlo Gibbs sampling (MCMC) via the freely available software, WinBUGS. The method and its ease of implementation are illustrated by a case study that involves incorporating three disparate datasets into an MCMC framework. The probabilities of infection when the uncertainty associated with parameter estimation is incorporated into a QMRA are shown to be considerably more variable over various dose ranges than the analogous probabilities obtained when constants from the literature are simply ‘plugged’ in as is done in most QMRAs. Neglecting these sources of uncertainty may lead to erroneous decisions for public health and risk management.
Resumo:
This paper presents an overview of the experiments conducted using Hybrid Clustering of XML documents using Constraints (HCXC) method for the clustering task in the INEX 2009 XML Mining track. This technique utilises frequent subtrees generated from the structure to extract the content for clustering the XML documents. It also presents the experimental study using several data representations such as the structure-only, content-only and using both the structure and the content of XML documents for the purpose of clustering them. Unlike previous years, this year the XML documents were marked up using the Wiki tags and contains categories derived by using the YAGO ontology. This paper also presents the results of studying the effect of these tags on XML clustering using the HCXC method.
Resumo:
Generally speaking, psychologists have suggested three traditional views of how people cope with uncertainty. They are the certainty maximiser, the intuitive statistician-economist and the knowledge seeker (Smithson, 2008). In times of uncertainty, such as the recent global financial crisis, these coping methods often result in innovation in industry. Richards (2003) identifies innovation as different from creativity in that innovation aims to transform and implement rather than simply explore and invent. An examination of the work of iconic fashion designers, through case study and situational analysis, reveals that coping with uncertainty manifests itself in ways that have resulted in innovations in design, marketing methods, production and consumption. In relation to contemporary fashion, where many garments look the same in style, colour, cut and fit (Finn, 2008), the concept of innovation is an important one. This paper explores the role of uncertainty as a driver of innovation in fashion design. A key aspect of seeking knowledge, as a mechanism to cope with this uncertainty, is a return to basics. This is a problem for contemporary fashion designers who are no longer necessarily makers and therefore do not engage with the basic materials and methods of garment construction. In many cases design in fashion has become digital, communicated to an unseen, unknown production team via scanned image and specification alone. The disconnection between the design and the making of garments, as a result of decades of off-shore manufacturing, has limited the opportunity for this return to basics. The authors argue that the role of the fashion designer has become about the final product and as a result there is a lack of innovation in the process of making: in the form, fit and function of fashion garments. They propose that ‘knowledge seeking’ as a result of uncertainty in the fashion industry, in particular through re-examination of the methods of making, could hold the key to a new era of innovation in fashion design.
Resumo:
Business practices vary from one company to another and business practices often need to be changed due to changes of business environments. To satisfy different business practices, enterprise systems need to be customized. To keep up with ongoing business practice changes, enterprise systems need to be adapted. Because of rigidity and complexity, the customization and adaption of enterprise systems often takes excessive time with potential failures and budget shortfall. Moreover, enterprise systems often drag business behind because they cannot be rapidly adapted to support business practice changes. Extensive literature has addressed this issue by identifying success or failure factors, implementation approaches, and project management strategies. Those efforts were aimed at learning lessons from post implementation experiences to help future projects. This research looks into this issue from a different angle. It attempts to address this issue by delivering a systematic method for developing flexible enterprise systems which can be easily tailored for different business practices or rapidly adapted when business practices change. First, this research examines the role of system models in the context of enterprise system development; and the relationship of system models with software programs in the contexts of computer aided software engineering (CASE), model driven architecture (MDA) and workflow management system (WfMS). Then, by applying the analogical reasoning method, this research initiates a concept of model driven enterprise systems. The novelty of model driven enterprise systems is that it extracts system models from software programs and makes system models able to stay independent of software programs. In the paradigm of model driven enterprise systems, system models act as instructors to guide and control the behavior of software programs. Software programs function by interpreting instructions in system models. This mechanism exposes the opportunity to tailor such a system by changing system models. To make this true, system models should be represented in a language which can be easily understood by human beings and can also be effectively interpreted by computers. In this research, various semantic representations are investigated to support model driven enterprise systems. The significance of this research is 1) the transplantation of the successful structure for flexibility in modern machines and WfMS to enterprise systems; and 2) the advancement of MDA by extending the role of system models from guiding system development to controlling system behaviors. This research contributes to the area relevant to enterprise systems from three perspectives: 1) a new paradigm of enterprise systems, in which enterprise systems consist of two essential elements: system models and software programs. These two elements are loosely coupled and can exist independently; 2) semantic representations, which can effectively represent business entities, entity relationships, business logic and information processing logic in a semantic manner. Semantic representations are the key enabling techniques of model driven enterprise systems; and 3) a brand new role of system models; traditionally the role of system models is to guide developers to write system source code. This research promotes the role of system models to control the behaviors of enterprise.
Resumo:
Starting from a local problem with finding an archival clip on YouTube, this paper expands to consider the nature of archives in general. It considers the technological, communicative and philosophical characteristics of archives over three historical periods: 1) Modern ‘essence archives’ – museums and galleries organised around the concept of objectivity and realism; 2) Postmodern mediation archives – broadcast TV systems, which I argue were also ‘essence archives,’ albeit a transitional form; and 3) Network or ‘probability archives’ – YouTube and the internet, which are organised around the concept of probability. The paper goes on to argue the case for introducing quantum uncertainty and other aspects of probability theory into the humanities, in order to understand the way knowledge is collected, conserved, curated and communicated in the era of the internet. It is illustrated throughout by reference to the original technological 'affordance' – the Olduvai stone chopping tool.