963 resultados para Selective Estrogen Receptor Modulators


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human estrogen receptor (hER) is a trans-acting regulatory protein composed of a series of discrete functional domains. We have microinjected an hER expression vector (HEO) into Xenopus oocyte nuclei and demonstrate, using Western blot assay, that the hER is synthesized. When nuclear extracts from oocytes were prepared and incubated in the presence of a 2.7 kb DNA fragment comprising the 5' end of the vitellogenin gene B2, formation of estrogen-dependent complexes could be visualized by electron microscopy over the estrogen responsive element (ERE). Of crucial importance is the observation that the complex formation is inhibited by the estrogen antagonist tamoxifen, is restored by the addition of the hormone and does not take place with extracts from control oocytes injected with the expression vector lacking the sequences encoding the receptor. The presence of the biologically active hER is confirmed in co-injection experiments, in which HEO is co-introduced with a CAT reporter gene under the control of a vitellogenin promoter containing or lacking the ERE. CAT assays and primer extensions analyses reveal that both the receptor and the ERE are essential for estrogen induced stimulation of transcription. The same approach was used to analyze selective hER mutants. We find that the DNA binding domain (region C) is essential for protein--DNA complex formation at the ERE but is not sufficient by itself to activate transcription from the reporter gene. In addition to region C, both the hormone binding (region E) and amino terminal (region A/B) domains are needed for an efficient transcription activation.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogen Receptor (ER) is an important target for pharmaceutical design. Like other ligand-dependent transcription factors, hormone binding regulates ER transcriptional activity. Nevertheless, the mechanisms by which ligands enter and leave ERs and other nuclear receptors remain poorly understood. Here, we report results of locally enhanced sampling molecular dynamics simulations to identify dissociation pathways of two ER ligands [the natural hormone 17 beta-estradiol (E-2) and the selective ER modulator raloxifene (RAL)] from the human ER alpha ligand-binding domain in monomeric and dimeric forms. E-2 dissociation occurs via three different pathways in ER monomers. One resembles the mousetrap mechanism (Path I), involving repositioning of helix 12 (H12), others involve the separation of H8 and H11 (Path II), and a variant of this pathway at the bottom of the ligand-binding domain (Path II`). RAL leaves the receptor through Path I and a Path I variant in which the ligand leaves the receptor through the loop region between H11 and H12 (Path I`). Remarkably, ER dimerization strongly suppresses Paths II and II` for E-2 dissociation and modifies RAL escape routes. We propose that differences in ligand release pathways detected in the simulations for ER monomers and dimers provide an explanation for previously observed effects of ER quaternary state on ligand dissociation rates and suggest that dimerization may play an important, and hitherto unexpected, role in regulation of ligand dissociation rates throughout the nuclear receptor family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a goal of cancer chemotherapy to achieve the selective killing of tumor cells while minimizing toxicity to normal tissues. We describe the design of selective toxins forming DNA adducts that attract the estrogen receptor (ER), a transcription factor that is overexpressed in many human breast and ovarian tumors. The compounds consist of 4-(3-aminopropyl)-N,N-(2-chloroethyl)-aniline linked to 2-(4′-hydroxyphenyl)-3-methyl-5-hydroxy-indole. The former moiety is a DNA damaging nitrogen mustard and the latter is a ligand for the ER. The connection between these groups was refined to permit DNA adducts formed by the mustard portion of the molecule to present the ligand domain so that it was able to interact efficiently with the ER. By using 16-mers containing specific DNA adducts, it was determined that monoadducts and putative intrastrand crosslinks were preferred targets for the ER over interstrand crosslinks. A series of structurally related 2-phenylindole mustards was prepared, some of which were selectively toxic to the ER-positive breast cancer cell line MCF-7, as compared with the ER(−) negative line MDA-MB231. The ability both to bind to DNA and to interact significantly with the ER were essential to achieve selective lethality toward ER(+) cells. Compounds forming DNA adducts without the ability to bind receptor showed similar toxicities in the two cell lines. Several models could explain the selective toxicity of the mustard–phenylindole compounds toward ER(+) cells. The favored model suggests that a mustard–DNA adduct is shielded by the ER from DNA repair enzymes and hence cells possessing an abundance of the ER selectively retain the adduct and are killed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estradiol protects against brain injury, neurodegeneration, and cognitive decline. Our previous work demonstrates that physiological levels of estradiol protect against stroke injury and that this protection may be mediated through receptor-dependent alterations of gene expression. In this report, we tested the hypothesis that estrogen receptors play a pivotal role in mediating neuroprotective actions of estradiol and dissected the potential biological roles of each estrogen receptor (ER) subtype, ERα and ERβ, in the injured brain. To investigate and delineate these mechanisms, we used ERα-knockout (ERαKO) and ERβ-knockout (ERβKO) mice in an animal model of stroke. We performed our studies by using a controlled endocrine paradigm, because endogenous levels of estradiol differ dramatically among ERαKO, ERβKO, and wild-type mice. We ovariectomized ERαKO, ERβKO, and the respective wild-type mice and implanted them with capsules filled with oil (vehicle) or a dose of 17β-estradiol that produces physiological hormone levels in serum. One week later, mice underwent ischemia. Our results demonstrate that deletion of ERα completely abolishes the protective actions of estradiol in all regions of the brain; whereas the ability of estradiol to protect against brain injury is totally preserved in the absence of ERβ. Thus, our results clearly establish that the ERα subtype is a critical mechanistic link in mediating the protective effects of physiological levels of estradiol in brain injury. Our discovery that ERα mediates protection of the brain carries far-reaching implications for the selective targeting of ERs in the treatment and prevention of neural dysfunction associated with normal aging or brain injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 5.2-kb mRNA band that contains estrogen receptor (ER) sequence and exhibits sex- and tissue-specific expression has been identified in rat pituitary via Northern analysis; this band is composed of at least two distinctive ER mRNA isoforms. This mRNA is expressed in high levels in female pituitary but is absent in male pituitary and uterus, whereas the mRNA encoding the full-length receptor (6.2 kb) is expressed in all the aforementioned tissues. Estradiol treatment potently induces the expression of the 5.2-kb band in the male pituitary. Oligonucleotide hybridization and ribonuclease-protection experiments indicate that the pituitary ER variant is missing exons 1-4. Two corresponding cDNA clones, truncated estrogen receptor product 1 and 2 (TERP-1 and TERP-2), were isolated by using the anchored PCR. Both sequences contain a 31-bp segment of specific sequence upstream of exon 5; TERP-2, however, contains an additional 66 bp of specific sequence between the 31-bp segment and exon 5. On Northern analysis, probes complementary to the 31-bp segment of specific sequence hybridize only to the 5.2-kb band. Immunoblotting identified several proteins in rat pituitary that could represent the translation products of these or related transcripts. In summary, several ER isoforms have been identified that exhibit both tissue-specific expression and marked estrogen regulation and differ from full-length receptor by virtue of sequence upstream of the exon 4/5 boundary. Physiologically, the putative proteins encoded by these or similar isoforms might be important modulators of the tissue- and promoter-specific effects of estradiol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activities of conantokin-G (con-G), conantokin-T (con-T), and several novel analogues have been studied using polyamine enhancement of [H-3]MK-801 binding to human glutamate-N-methyl-D-aspartate (NMDA) receptors, and their structures have been examined using CD and H-1 NMR spectroscopy. The potencies of con-G[A7], con-G, and con-T as noncompetitive inhibitors of spermine-enhanced [H-3]MK-801 binding to NMDA receptor obtained from human brain tissue are similar to those obtained using rat brain tissue. The secondary structure and activity of con-G are found to be highly sensitive to amino acid substitution and modification. NMR chemical shift data indicate that con-G, con-G[D8,D17], and con-G[A7] have similar conformations in the presence of Ca2+. This consists of a helix for residues 2-16, which is kinked in the vicinity of Gla10. This is confirmed by 3D structure calculations on con-G[A7]. Restraining this helix in a linear form (i.e., con-G[A7,E10-K13]) results in a minor reduction in potency. Incorporation of a 7-10 salt-bridge replacement (con-G[K7-E10]) prevents helix formation in aqueous solution and produces a peptide with low potency. Peptides with the Leu5-Tyr5 substitution also have low potencies (con-G[Y5,A7] and con-G[Y5,K7]) indicating that Leu5 in con-G is important for full antagonist behavior. We have also shown that the Gla-Ala7 substitution increases potency, whereas the Gla-Lys7 substitution has no effect. Con-G and con-G[K7] both exhibit selectivity between NMDA subtypes from mid-frontal and superior temporal gyri, but not between sensorimotor and mid-frontal gyri. Asn8 and/or Asn17 appear to be important for the ability of con-G to function as an inhibitor of polyamine-stimulated [3H]MK-801 binding, but not in maintaining secondary structure. The presence of Ca2+ does not increase the potencies of con-G and con-T for NMDA receptors but does stabilize the helical structures of con-G, con-G[D8,D17], and, to a lesser extent, con-G[A7]. The NMR data support the existence of at least two independent Ca2+-chelating sites in con-G, one involving Gla7 and possibly Gla3 and the other likely to involve Gla10 and/or Gla14.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estrogen receptor alpha (ER alpha) is implicated in the development of breast cancer. The immunophilins, cyclophilin 40 (CyP40) and FKBP52, are associated with ER alpha and other steroid receptors in mutually exclusive heterocomplexes and may differentially modulate receptor activity. Since previous studies have not assessed the levels of these immunophilins in breast cancer, we examined 10 breast cancer cell lines for mRNA and protein expression of CyP40 and FKBP52 and for amplification of the CyP40 gene. In addition, 26 breast carcinomas, including seven with matched normal breast tissue, were examined for mRNA expression of both immunophilins. CyP40 and FKBP52 were ubiquitously expressed in breast cancer cell lines, but there were significant differences in their pattern of expression. FKBP52 protein levels were generally an order of magnitude greater than those for CyP40. FKBP52 mRNA expression correlated strongly with protein expression and was significantly higher in ER alpha-positive compared with ER alpha-negative cell lines. However, CyP40 mRNA expression did not correlate with protein expression, nor did expression of this immunophilin correlate with ER alpha status. Relatively high expression of CyP40 in one cell line (BT-20) could be attributed to amplification of the CyP40 gene. Both immunophilins were also ubiquitously expressed in breast carcinomas, and we demonstrate for the first time that both CyP40 and FKBP52 mRNA are overexpressed in breast tumors compared to matched normal breast controls. The overexpression of CyP40 and FKBP52, coupled with relative differences in their expression in tumors, may have important functional implications for ER alpha and other steroid receptors in breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Cyclophilin 40 (CyP40) is an estrogen receptor-associated protein which appears to modify receptor function. The aim of this study was to determine the extent of allelic loss at the CyP40 locus in a panel of breast carcinomas using a newly characterized microsatellite marker located upstream of the CyP40 gene and then to correlate this with losses at chromosomal sites for cancer-associated genes. Methods: Allelic loss at CyP40 was determined from patients' matched tumor and normal breast tissue using Genescan 672 software analysis of fluorescently labeled, PAGE-separated PCR products incorporating the marker. For each patient, allelic loss at CyP40 was then assessed and compared with losses at markers for various cancer-associated genes. Results: Allelic loss was detected in 30% of breast carcinomas from patients heterozygous for the CyP40 marker. All carcinomas demonstrating allelic loss were grade II or III invasive ductal carcinomas and generally showed multiple losses at other sites near known cancer-associated genes. Conclusions: The polymorphic marker which we characterized was useful in determining allelic loss at the CyP40 locus in breast cancer patients and when applied in these studies in conjunction with various cancer-associated gene markers, suggests that deletions in the region of the CyP40 gene might be a late event in breast tumor progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although administration of 17 beta-estradiol (estrogen) following trauma-hemorrhage attenuates the elevation of cytokine production and mitogen-activated protein kinase (MAPK) activation in epidermal keratinocytes, whether the salutary effects of estrogen are mediated by estrogen receptor (ER)-alpha. or ER-beta is not known. To determine which estrogen receptor is the mediator, we subjected C3H/HeN male mice to trauma-hemorrhage (2-cm midline laparotomy and bleeding of the animals to a mean blood pressure of 35 mmHg and maintaining that pressure for 90 min) followed by resuscitation with Ringer`s lactate (four times the shed blood volume) At the middle of resuscitation we subcutaneously injected ER-alpha agonist propyl pyrazole trial (PPT; 5 mu g/kg), ER-beta agonist diarylpropionitrile (DPN; 5 mu g/kg), estrogen (50 mu g/kg), or ER antagonist ICI 182,780 (150 mu g/kg). Two hours after resuscitation, we isolated keratinocytes, stimulated them with lipopolysaccharide for 24 In (5 mu g/mL for maximum cytokine production), and measured the production of interleukin (IL)-6, IL-10, IL-12, and INF-alpha and the activation of MAPK. Keratinocyte cytokine production markedly increased and MAPK activation occurred following trauma-hemorrhage but were normalized by administration of estrogen, PPT and DPN. PPT and DPN administration were equally effective in normalizing the inflammatory response of keratinocytes, indicating that both ER-alpha. and ER-beta mediate the salutary effects of estrogen on kerotinocytes after trauma-hemorrhage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary murine fetal hemopoietic cells were transformed with a fusion protein consisting of the ligand-binding domain of the estrogen receptor and a carboxyl-terminally truncated c-Myb protein (ERMYB), The ERMYB-transformed hemopoietic cells exhibit an immature myeloid phenotype when grown in the presence of beta-estradiol. Upon removal of beta-estradiol, the ERMYB cells display increased adherence, decreased clonogenicity and differentiate to cells exhibiting granulocyte or macrophage morphology, The expression of the c-myc, c-kit, cdc2 and bcl-2 genes, which are putatively regulated by Myb, was investigated in ERMYB cells grown in the presence or absence of beta-estradiol. Neither c-myc nor cdc2 expression was down-regulated after removal of beta-estradiol demonstrating that differentiation is not a consequence of decreased transactivation of these genes by ERMYB. While bcl-2 expression was reduced by 50% in ERMYB cells grown in the absence of beta-estradiol, there was no increase in DNA laddering, suggesting that Myb was not protecting ERMYB cells from apoptosis, In contrast, a substantial (200-fold) decrease in c-kit mRNA level was observed following differentiation of ERMYB cells, and c-kit mRNA could be partially re-induced by the re-addition of beta-estradiol. Furthermore, a reporter construct containing the c-kit promoter was activated when cotransfected with a Myb expression vector, providing further evidence of a role for Myb in the regulation of c-kit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The higher frequency of triple-negative and HER-2-positive tumors detected in younger patients has been suggested as an explanation for the more aggressive tumor types observed in this age group. However, estrogen receptor (ER)-positive tumors are the most frequent subtype of breast carcinomas identified, even in younger patients. In this retrospective study, the morphological and immunohistochemical profiles of ER-positive breast carcinomas from women 35 yrs and younger that were diagnosed between 1997 and 2007 were evaluated. From these cases, 213 were selected based on the availability of pathology reports and paraffin blocks. For comparison, 117 consecutive cases of breast carcinomas diagnosed in patients >60 yrs from 2006 were included. Paraffin-embedded tumors were stained for expression of ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2). Ki-67 antigen, epidermal growth factor receptor (EGFR), cytokeratin 5/6, p53, vimentin, CD117, and p63 using tissue microarrays. ER-positive carcinomas were diagnosed in 120 (56.1%) samples of the younger patient group and in 92 (78.6%) samples of the older patient group. Of these ER-positive carcinomas, 48 (40%) from the younger patient group presented the subtype luminal A, compared with 53 (57.6%) from the older patient group (p=0.01). Tumors from the younger patient group were also associated with increased vascular involvement, co-expression of HER-2, and decreased expression of CD117. These results highlight differences in expression markers and the pathology of ER-positive tumors detected in younger women, with a notable characteristic being co-expression of HER-2. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Locus coeruleus (LC) is involved in the LHRH regulation by gonadal steroids. We investigated the expression of progesterone and estrogen receptors (PR; ER) in LC neurons of ER alpha (alpha ERKO) or ER beta (beta ERKO) knockout mice, and their wild-type (alpha WT and beta WT). Immunocytochemical studies showed that LC expresses PR and both ERs, although ER beta was more abundant. Estradiol benzoate (EB) decreased ER alpha-positive cells in WT and beta ERKO mice, and progesterone caused a further reduction, whereas none of the steroids influenced ER beta expression. ER beta deletion increased ER alpha while ER alpha deletion did not alter ER beta expression. In both WT mice, EB increased PR expression, which was diminished by progesterone. These steroid effects were also observed in alpha ERKO animals but to a lesser extent, suggesting that ER alpha is partially responsible for the estrogenic induction of PR in LC. Steroid effects on PR in beta ERKO mice were similar to those in the alpha ERKO but to a lesser extent, probably because PR expression was already high in the oil-treated group. This expression seems to be specific of LC neurons, since it was not observed in other areas studied, the preoptic area and ventromedial nucleus of hypothalamus. These findings show that LC in mice expresses alpha ER, beta ER, and PR, and that a balance between them may be critical for the physiological control of reproductive function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of TAK-778 [(2R, 4S)-(-)-N-(4-diethoxyphosphorylmethylphenyl)-1,2,4,5-tetrahydro-4-methyl-7,8-methylenedioxy-5-oxo-3-benzothiepin-2-carboxamide)] on in vitro osteogenic events and on gene expression of osteoblastic cells derived from human alveolar bone and the participation of estrogen receptors (ERs) on such effect. Osteoblastic cells were subcultured, with or without TAK-778 (10(-5) M), to evaluate cell growth and viability, total protein content, and alkaline phosphatase (ALP) activity at 7, 14, and 21 days; bone-like formation at 21 days; and gene expression, using cDNA microarray, at 7 days. Also, osteoblastic cells were exposed to TAK-778 (10-5 M) combined to ICI182,780, a nonspecific ER antagonist (10(-6) M), and gene expression was evaluated by real-time polymerase chain reaction (PCR) at 7 days. TAK-778 induced a reduction in culture growth and an increase in cell synthesis, ALP activity, and bone-like formation. The cDNA microarray showed genes associated with cell adhesion and differentiation, skeletal development, ossification, and transforming growth factor-P receptor signaling pathway, with a tendency to be higher expressed in cells exposed to TAK-778. The gene expression of ALP, osteocalcin, Msh homeobox 2, receptor activator of NF-kappa B ligand, and intercellular adhesion molecule 1 was increased by TAK-778 as demonstrated by real-time PCR, and this effect was antagonized by ICI182,780. The present results demonstrated that TAK-778 acts at a transcriptional level to enhance the in vitro osteogenic process and that its effect on gene expression of osteoblastic cells is mediated, at least partially, through ERs. Based on these findings, TAK-778 could be considered in the treatment of bone metabolic disorders. Exp Biol Med 234:190-199, 2009