999 resultados para Seismic Response


Relevância:

70.00% 70.00%

Publicador:

Resumo:

As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This PhD dissertation presents a profound study of the vulnerability of buildings and non-structural elements stemming from the investigation of the Mw 5.2 Lorca 2011 earthquake; which constitutes one of the most significant earthquakes in Spain. It left nine fatalities due to falling debris from reinforced concrete buildings, 394 injured and material damage valued at 800 million euros. Within this framework, the most relevant initiatives concerning the vulnerability of buildings and the exposure of Lorca are studied. This work revealed two lines of research: the elaboration of a rational method to determine the adequacy of a specific fragility curve for the particular seismic risk study of a region; and the relevance of researching the seismic performance of non-structural elements. As a consequence, firstly, a method to assess and select fragility curves for seismic risk studies from the catalogue of those available in the literature is elaborated and calibrated by means of a case study. The said methodology is based on a multidimensional index and provides a ranking that classifies the curves in terms of adequacy. Its results for the case of Lorca led to the elaboration of new fragility curves for unreinforced masonry buildings. Moreover, a simplified method to account for the unpredictable directionality of the seism in the creation of fragility curves is contributed. Secondly, the characterisation of the seismic capacity and demand of the non-structural elements that caused most of the human losses is studied. Concerning the capacity, an analytical approach derived from theoretical considerations to characterise the complete out-of-plane seismic response curve of unreinforced masonry cantilever walls is provided; as well as a simplified and more practical trilinear version of it. Concerning the demand, several methods for characterising the Floor Response Spectra of reinforced concrete buildings are tested through case studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In highly urbanized coastal lowlands, effective site characterization is crucial for assessing seismic risk. It requires a comprehensive stratigraphic analysis of the shallow subsurface, coupled with the precise assessment of the geophysical properties of buried deposits. In this context, late Quaternary paleovalley systems, shallowly buried fluvial incisions formed during the Late Pleistocene sea-level fall and filled during the Holocene sea-level rise, are crucial for understanding seismic amplification due to their soft sediment infill and sharp lithologic contrasts. In this research, we conducted high-resolution stratigraphic analyses of two regions, the Pescara and Manfredonia areas along the Adriatic coastline of Italy, to delineate the geometries and facies architecture of two paleovalley systems. Furthermore, we carried out geophysical investigations to characterize the study areas and perform seismic response analyses. We tested the microtremor-based horizontal-to-vertical spectral ratio as a mapping tool to reconstruct the buried paleovalley geometries. We evaluated the relationship between geological and geophysical data and identified the stratigraphic surfaces responsible for the observed resonances. To perform seismic response analysis of the Pescara paleovalley system, we integrated the stratigraphic framework with microtremor and shear wave velocity measurements. The seismic response analysis highlights strong seismic amplifications in frequency ranges that can interact with a wide variety of building types. Additionally, we explored the applicability of artificial intelligence in performing facies analysis from borehole images. We used a robust dataset of high-resolution digital images from continuous sediment cores of Holocene age to outline a novel, deep-learning-based approach for performing automatic semantic segmentation directly on core images, leveraging the power of convolutional neural networks. We propose an automated model to rapidly characterize sediment cores, reproducing the sedimentologist's interpretation, and providing guidance for stratigraphic correlation and subsurface reconstructions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with the numerical assessment of the influence of parameters such as pre-compression level, aspect ratio, vertical and horizontal reinforcement ratios and boundary conditions on the lateral strength of masonry walls under in-plane loading. The numerical study is performed through the software DIANA (R) based on the Finite Element Method. The validation of the numerical model is carried out from a database of available experimental results on masonry walls tested under cyclic lateral loading. Numerical results revealed that boundary conditions play a central role on the lateral behavior of masonry walls under in-plane loading and determine the influence of level of pre-compression as well as the reinforcement ratio on the wall strength. The lateral capacity of walls decreases with the increase of aspect ratio and with the decrease of pre-compression. Vertical steel bars appear to have almost no influence in the shear strength of masonry walls and horizontal reinforcement only increases the lateral strength of masonry walls if the shear response of the walls is determinant for failure, which is directly related to the boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação ente o ISEL e o LNEC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gravity loads can affect a reinforced concrete structure's response to seismic actions, however, traditional procedures for testing the beam behaviour do not take this effect into consideration. An experimental campaign was carried out in order to assess the influence of the gravity load on RC beam connection to the column subjected to cyclic loading. The experiments included the imposition of a conventional quasi-static test protocol based on the imposition of a reverse cyclic displacement history and of an alternative cyclic test procedure starting from the gravity load effects. The test results are presented, compared and analysed in this paper. The imposition of a cyclic test procedure that included the gravity loads effects on the RC beam ends reproduces the demands on the beams' critical zones more realistically than the traditional procedure. The consideration of the vertical load effects in the test procedure led to an accumulation of negative (hogging) deformation. This phenomenon is sustained with the behaviour of a portal frame system under cyclic loads subject to a significant level of the vertical load, leading to the formation of unidirectional plastic hinges. In addition, the hysteretic behaviour of the RC beam ends tested was simulated numerically using the nonlinear structural analysis software - OpenSees. The beam-column model simulates the global element behaviour very well, as there is a reasonable approximation to the hysteretic loops obtained experimentally. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the last years, several studies have been made aiming to assess the out-of-plane seismic response of unreinforced stone masonry structures. This fact led to the development of a wide variety of models and approaches, ranging from simple kinematic based analytical models up to complex numerical simulations. Nevertheless, for the sake of simplicity, the out-of-plane seismic response of a masonry wall pier may be obtained by means of a simple single-degree-of-freedom system while still providing good results. In fact, despite the assumptions associated with such a simple formulation, it is also true that the epistemic uncertainty inherent with the selection of appropriate input parameters in more complex models may render them truly ineffective. In this framework, this paper focuses on the study of the out-of-plane bending of unreinforced stone masonry walls (cantilevers) by proposing a simplified analytical approach based on the construction of a linearized four-branch model, which is used to characterize the linear and nonlinear response of such structural elements through an overturning moment-rotation relationship. The formulation of the four-branch model is presented and described in detail and the meaningful parameters used for its construction are obtained from a set of experimental laboratory tests performed on six full-scale unreinforced regular sacco stone masonry specimens. Moreover, a parametric analysis aiming to evaluate the effect of these parameters’ variation on the final configuration of the model is presented and critically discussed. Finally, the results obtained from the application of the developed four-branch model on real unreinforced regular sacco stone masonry walls are thoroughly analysed and the main conclusions obtained from its application are summarized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Azores archipelago is a zone with a vast cultural heritage, presenting a building stock mainly constructed in traditional stone masonry. It is known that this type of construction exhibits poor behaviour under seismic excitations; however it is extensively used in seismic prone areas, such as this case. The 9th of July of 1998 earthquake was the last seismic event in the islands, leaving many traditional stone constructions severely damaged or totally destroyed. This scenario led to an effort by the local government of improving the seismic resistance of these constructions, with the application of several reinforcement techniques. This work aims to study some of the most used reinforcement schemes after the 1998 earthquake, and to assess their effectiveness in the mitigation of the construction’s seismic vulnerability. A brief evaluation of the cost versus benefit of these retrofitting techniques is also made, seeking to identify those that are most suitable for each building typology. Thus, it was sought to analyze the case of real structures with different geometrical and physical characteristics, by establishing a comparison between the seismic performance of reinforced and non-reinforced structures. The first section contains the analysis of a total of six reinforcement scenarios for each building chosen. Using the recorded 1998 earthquake accelerograms, a linear time-history analysis was performed for each reinforcement scenario. A comparison was then established between the maximum displacements, inter-storey drift and maximum stress obtained, in order to evaluate the global seismic response of each reinforced structure. In the second part of the work, the examination of the performance obtained in the previous section, in relation to the cost of implementing each reinforcement technique, allowed to draw conclusions concerning the viability of implementing each reinforcement method, based on the book value of the buildings in study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Programa de doctorado: Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería Instituto Universitario (SIANI)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La tesi tratta di strumenti finalizzati alla valutazione dello stato conservativo e di supporto all'attività di manutenzione dei ponti, dai più generali Bridge Management Systems ai Sistemi di Valutazione Numerica della Condizione strutturale. Viene proposto uno strumento originale con cui classificare i ponti attraverso un Indice di Valutazione Complessiva e grazie ad esso stabilire le priorità d'intervento. Si tara lo strumento sul caso pratico di alcuni ponti della Provincia di Bologna. Su un ponte in particolare viene realizzato un approfondimento specifico sulla determinazione approssimata dei periodi propri delle strutture da ponte. Si effettua un confronto dei risultati di alcune modellazioni semplificate in riferimento a modellazioni dettagliate e risultati sperimentali.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research performed during the PhD and presented in this thesis, allowed to make judgments on pushover analysis method about its application in evaluating the correct structural seismic response. In this sense, the extensive critical review of existing pushover procedures (illustrated in chapter 1) outlined their major issues related to assumptions and to hypothesis made in the application of the method. Therefore, with the purpose of evaluate the effectiveness of pushover procedures, a wide numerical investigation have been performed. In particular the attention has been focused on the structural irregularity on elevation, on the choice of the load vector and on its updating criteria. In the study eight pushover procedures have been considered, of which four are conventional type, one is multi-modal, and three are adaptive. The evaluation of their effectiveness in the identification of the correct dynamic structural response, has been done by performing several dynamic and static non-linear analysis on eight RC frames, characterized by different proprieties in terms of regularity in elevation. The comparisons of static and dynamic results have then permitted to evaluate the examined pushover procedures and to identify the expected margin of error by using each of them. Both on base shear-top displacement curves and on considered storey parameters, the best agreement with the dynamic response has been noticed on Multi-Modal Pushover procedure. Therefore the attention has been focused on Displacement-based Adative Pushover, coming to define for it an improvement strategy, and on modal combination rules, advancing an innovative method based on a quadratic combination of the modal shapes (QMC). This latter has been implemented in a conventional pushover procedure, whose results have been compared with those obtained by other multi-modal procedures. The development of research on pushover analysis is very important because the objective is to come to the definition of a simple, effective and reliable analysis method, indispensable tool in the seismic evaluation of new or existing structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research work faces the problem of insertion of viscous dampers into Moment Resisiting Frames (MRF) for maximum efficiency in mitigation of the seismic effects. The work would lead to a precise design indication. The fundamental result of the thesis consists in showing that, even for moment-resisting structures, you can design a system of added viscous dampers able to achieve target levels of performances. Ie given the reduction factor in the seismic response, discover the characteristics of the viscous dampers which allow to achieve it.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nella presente tesi è proposta una metodologia per lo studio e la valutazione del comportamento sismico di edifici a telaio. Il metodo prevede la realizzazione di analisi non-lineari su modelli equivalenti MDOF tipo stick, in accordo alla classificazione data nel report FEMA 440. Gli step per l’applicazione del metodo sono descritti nella tesi. Per la validazione della metodologia si sono utilizzati confronti con analisi time-history condotte su modelli tridimensionali dettagliati delle strutture studiate (detailed model). I parametri ingegneristici considerati nel confronto, nell’ottica di utilizzare il metodo proposto in un approccio del tipo Displacement-Based Design sono lo spostamento globale in sommità, gli spostamenti di interpiano, le forze di piano e la forza totale alla base. I risultati delle analisi condotte sui modelli stick equivalenti, mostrano una buona corrispondenza, ottima in certi casi, con quelli delle analisi condotte sui modelli tridimensionali dettagliati. Le time-history realizzate sugli stick model permettono però, un consistente risparmio in termini di onere computazionale e di tempo per il post-processing dei risultati ottenuti.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los terremotos constituyen una de las más importantes fuentes productoras de cargas dinámicas que actúan sobre las estructuras y sus cimentaciones. Cuando se produce un terremoto la energía liberada genera movimientos del terreno en forma de ondas sísmicas que pueden provocar asientos en las cimentaciones de los edificios, empujes sobre los muros de contención, vuelco de las estructuras y el suelo puede licuar perdiendo su capacidad de soporte. Los efectos de los terremotos en estructuras constituyen unos de los aspectos que involucran por su condición de interacción sueloestructura, disciplinas diversas como el Análisis Estructural, la Mecánica de Suelo y la Ingeniería Sísmica. Uno de los aspectos que han sido poco estudiados en el cálculo de estructuras sometidas a la acciones de los terremotos son los efectos del comportamiento no lineal del suelo y de los movimientos que pueden producirse bajo la acción de cargas sísmicas, tales como posibles despegues y deslizamientos. En esta Tesis se estudian primero los empujes sísmicos y posibles deslizamientos de muros de contención y se comparan las predicciones de distintos tipos de cálculos: métodos pseudo-estáticos como el de Mononobe-Okabe (1929) con la contribución de Whitman-Liao (1985), y formulaciones analíticas como la desarrollada por Veletsos y Younan (1994). En segundo lugar se estudia el efecto del comportamiento no lineal del terreno en las rigideces de una losa de cimentación superficial y circular, como la correspondiente a la chimenea de una Central Térmica o al edificio del reactor de una Central Nuclear, considerando su variación con frecuencia y con el nivel de cargas. Finalmente se estudian los posibles deslizamientos y separación de las losas de estas dos estructuras bajo la acción de terremotos, siguiendo la formulación propuesta por Wolf (1988). Para estos estudios se han desarrollado una serie de programas específicos (MUROSIS, VELETSOS, INTESES y SEPARSE) cuyos listados y detalles se incluyen en los Apéndices. En el capítulo 6 se incluyen las conclusiones resultantes de estos estudios y recomendaciones para futuras investigaciones. ABSTRACT Earthquakes constitute one of the most important sources of dynamic loads that acting on structures and foundations. When an earthquake occurs the liberated energy generates seismic waves that can give rise to structural vibrations, settlements of the foundations of buildings, pressures on retaining walls, and possible sliding, uplifting or even overturning of structures. The soil can also liquefy losing its capacity of support The study of the effects of earthquakes on structures involve the use of diverse disciplines such as Structural Analysis, Soil Mechanics and Earthquake Engineering. Some aspects that have been the subject of limited research in relation to the behavior of structures subjected to earthquakes are the effects of nonlinear soil behavior and geometric nonlinearities such as sliding and uplifting of foundations. This Thesis starts with the study of the seismic pressures and potential displacements of retaining walls comparing the predictions of two types of formulations and assessing their range of applicability and limitations: pseudo-static methods as proposed by Mononobe-Okabe (1929), with the contribution of Whitman-Liao (1985), and analytical formulations as the one developed by Veletsos and Younan (1994) for rigid walls. The Thesis deals next with the effects of nonlinear soil behavior on the dynamic stiffness of circular mat foundations like the chimney of a Thermal Power Station or the reactor building of a Nuclear Power Plant, as a function of frequency and level of forces. Finally the seismic response of these two structures accounting for the potential sliding and uplifting of the foundation under a given earthquake are studied, following an approach suggested by Wolf (1988). In order to carry out these studies a number of special purposes computer programs were developed (MUROSIS, VELETSOS, INTESES and SEPARSE). The listing and details of these programs are included in the appendices. The conclusions derived from these studies and recommendations for future work are presented in Chapter 6.