985 resultados para Segmentation Method
Resumo:
BACKGROUND: Estimation of glomerular filtration rate (eGFR) using a common formula for both adult and pediatric populations is challenging. Using inulin clearances (iGFRs), this study aims to investigate the existence of a precise age cutoff beyond which the Modification of Diet in Renal Disease (MDRD), the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), or the Cockroft-Gault (CG) formulas, can be applied with acceptable precision. Performance of the new Schwartz formula according to age is also evaluated. METHOD: We compared 503 iGFRs for 503 children aged between 33 months and 18 years to eGFRs. To define the most precise age cutoff value for each formula, a circular binary segmentation method analyzing the formulas' bias values according to the children's ages was performed. Bias was defined by the difference between iGFRs and eGFRs. To validate the identified cutoff, 30% accuracy was calculated. RESULTS: For MDRD, CKD-EPI and CG, the best age cutoff was ≥14.3, ≥14.2 and ≤10.8 years, respectively. The lowest mean bias and highest accuracy were -17.11 and 64.7% for MDRD, 27.4 and 51% for CKD-EPI, and 8.31 and 77.2% for CG. The Schwartz formula showed the best performance below the age of 10.9 years. CONCLUSION: For the MDRD and CKD-EPI formulas, the mean bias values decreased with increasing child age and these formulas were more accurate beyond an age cutoff of 14.3 and 14.2 years, respectively. For the CG and Schwartz formulas, the lowest mean bias values and the best accuracies were below an age cutoff of 10.8 and 10.9 years, respectively. Nevertheless, the accuracies of the formulas were still below the National Kidney Foundation Kidney Disease Outcomes Quality Initiative target to be validated in these age groups and, therefore, none of these formulas can be used to estimate GFR in children and adolescent populations.
Resumo:
Ce mémoire de maîtrise présente une nouvelle approche non supervisée pour détecter et segmenter les régions urbaines dans les images hyperspectrales. La méthode proposée n ́ecessite trois étapes. Tout d’abord, afin de réduire le coût calculatoire de notre algorithme, une image couleur du contenu spectral est estimée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur deux critères complémentaires mais contradictoires de bonne visualisation; à savoir la précision et le contraste, est réalisée pour l’affichage couleur de chaque image hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non urbaines, la seconde étape consiste à extraire quelques caractéristiques discriminantes (et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous avons extrait une série de paramètres discriminants pour décrire les caractéristiques d’une zone urbaine, principalement composée d’objets manufacturés de formes simples g ́eométriques et régulières. Nous avons utilisé des caractéristiques texturales basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de la matrice de co-occurrence combinés avec des caractéristiques structurelles basées sur l’orientation locale du gradient de l’image et la détection locale de segments de droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper des données de dimensions élevées, nous avons décidé de classifier individuellement, dans la dernière étape, chaque caractéristique texturale ou structurelle avec une simple procédure de K-moyennes et ensuite de combiner ces segmentations grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de segmentations. Les expérimentations données dans ce rapport montrent que cette stratégie est efficace visuellement et se compare favorablement aux autres méthodes de détection et segmentation de zones urbaines à partir d’images hyperspectrales.
Resumo:
The work done in this master's thesis, presents a new system for the recognition of human actions from a video sequence. The system uses, as input, a video sequence taken by a static camera. A binary segmentation method of the the video sequence is first achieved, by a learning algorithm, in order to detect and extract the different people from the background. To recognize an action, the system then exploits a set of prototypes generated from an MDS-based dimensionality reduction technique, from two different points of view in the video sequence. This dimensionality reduction technique, according to two different viewpoints, allows us to model each human action of the training base with a set of prototypes (supposed to be similar for each class) represented in a low dimensional non-linear space. The prototypes, extracted according to the two viewpoints, are fed to a $K$-NN classifier which allows us to identify the human action that takes place in the video sequence. The experiments of our model conducted on the Weizmann dataset of human actions provide interesting results compared to the other state-of-the art (and often more complicated) methods. These experiments show first the sensitivity of our model for each viewpoint and its effectiveness to recognize the different actions, with a variable but satisfactory recognition rate and also the results obtained by the fusion of these two points of view, which allows us to achieve a high performance recognition rate.
Resumo:
Pour analyser les images en tomodensitométrie, une méthode stœchiométrique est gé- néralement utilisée. Une courbe relie les unités Hounsfield d’une image à la densité électronique du milieu. La tomodensitométrie à double énergie permet d’obtenir des informations supplémentaires sur ces images. Une méthode stœchiométrique a été dé- veloppée pour permettre de déterminer les valeurs de densité électronique et de numéro atomique effectif à partir d’une paire d’images d’un tomodensitomètre à double énergie. Le but de cette recherche est de développer une nouvelle méthode d’identification de tissus en utilisant ces paramètres extraits en tomodensitométrie à double énergie. Cette nouvelle méthode est comparée avec la méthode standard de tomodensitométrie à simple énergie. Par ailleurs, l’impact dosimétrique de bien identifier un tissu est déterminé. Des simulations Monte Carlo permettent d’utiliser des fantômes numériques dont tous les paramètres sont connus. Les différents fantômes utilisés permettent d’étalonner les méthodes stœchiométriques, de comparer la polyvalence et la robustesse des méthodes d’identification de tissus double énergie et simple énergie, ainsi que de comparer les distributions de dose dans des fantômes uniformes de mêmes densités, mais de compo- sitions différentes. La méthode utilisant la tomodensitométrie à double énergie fournit des valeurs de densi- tés électroniques plus exactes, quelles que soient les conditions étudiées. Cette méthode s’avère également plus robuste aux variations de densité des tissus. L’impact dosimé- trique d’une bonne identification de tissus devient important pour des traitements aux énergies plus faibles, donc aux énergies d’imagerie et de curiethérapie.
Resumo:
This paper presents a computer-vision based marker-free method for gait-impairment detection in Patients with Parkinson's disease (PWP). The system is based upon the idea that a normal human body attains equilibrium during the gait by aligning the body posture with Axis-of-Gravity (AOG) using feet as the base of support. In contrast, PWP appear to be falling forward as they are less-able to align their body with AOG due to rigid muscular tone. A normal gait exhibits periodic stride-cycles with stride-angle around 45o between the legs, whereas PWP walk with shortened stride-angle with high variability between the stride-cycles. In order to analyze Parkinsonian-gait (PG), subjects were videotaped with several gait-cycles. The subject's body was segmented using a color-segmentation method to form a silhouette. The silhouette was skeletonized for motion cues extraction. The motion cues analyzed were stride-cycles (based on the cyclic leg motion of skeleton) and posture lean (based on the angle between leaned torso of skeleton and AOG). Cosine similarity between an imaginary perfect gait pattern and the subject gait patterns produced 100% recognition rate of PG for 4 normal-controls and 3 PWP. Results suggested that the method is a promising tool to be used for PG assessment in home-environment.
Resumo:
Microstrip antennas are widely used in modern telecommunication systems. This is particularly due to the great variety of geometries and because they are easily built and integrated to other high frequency devices and circuits. This work presents a study of the properties of the microstrip antenna with an aperture impressed in the conducting patch. Besides, the analysis is performed for isotropic and anisotropic dielectric substrates. The Multiport Network Model MNM is used in combination with the Segmentation Method and the Greens function technique in the analysis of the considered microstrip antenna geometries. The numerical analysis is performed by using the boundary value problem solution, by considering separately the impedance matrix of the structure segments. The analysis for the complete structure is implemented by choosing properly the number and location of the neighboor element ports. The numerial analysis is performed for the following antenna geometries: resonant cavity, microstrip rectangular patch antenna, and microstrip rectangular patch antenna with aperture. The analysis is firstly developed for microstrip antennas on isotropic substrates, and then extended to the case of microstrip antennas on anisotropic substrates by using a Mapping Method. The experimental work is described and related to the development of several prototypes of rectangular microstrip patch antennas wtih and without rectangular apertures. A good agreement was observed between the simulated and measured results. Thereafter, a good agreement was also observed between the results of this work and those shown in literature for microstrip antennas on isotropic substrates. Furthermore, results are proposed for rectangular microstrip patch antennas wtih rectangular apertures in the conducting patch
Resumo:
The vascular segmentation is important in diagnosing vascular diseases like stroke and is hampered by noise in the image and very thin vessels that can pass unnoticed. One way to accomplish the segmentation is extracting the centerline of the vessel with height ridges, which uses the intensity as features for segmentation. This process can take from seconds to minutes, depending on the current technology employed. In order to accelerate the segmentation method proposed by Aylward [Aylward & Bullitt 2002] we have adapted it to run in parallel using CUDA architecture. The performance of the segmentation method running on GPU is compared to both the same method running on CPU and the original Aylward s method running also in CPU. The improvemente of the new method over the original one is twofold: the starting point for the segmentation process is not a single point in the blood vessel but a volume, thereby making it easier for the user to segment a region of interest, and; the overall gain method was 873 times faster running on GPU and 150 times more fast running on the CPU than the original CPU in Aylward
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.
Resumo:
BACKGROUND Estimation of glomerular filtration rate (eGFR) using a common formula for both adult and pediatric populations is challenging. Using inulin clearances (iGFRs), this study aims to investigate the existence of a precise age cutoff beyond which the Modification of Diet in Renal Disease (MDRD), the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), or the Cockroft-Gault (CG) formulas, can be applied with acceptable precision. Performance of the new Schwartz formula according to age is also evaluated. METHOD We compared 503 iGFRs for 503 children aged between 33 months and 18 years to eGFRs. To define the most precise age cutoff value for each formula, a circular binary segmentation method analyzing the formulas' bias values according to the children's ages was performed. Bias was defined by the difference between iGFRs and eGFRs. To validate the identified cutoff, 30% accuracy was calculated. RESULTS For MDRD, CKD-EPI and CG, the best age cutoff was ≥14.3, ≥14.2 and ≤10.8 years, respectively. The lowest mean bias and highest accuracy were -17.11 and 64.7% for MDRD, 27.4 and 51% for CKD-EPI, and 8.31 and 77.2% for CG. The Schwartz formula showed the best performance below the age of 10.9 years. CONCLUSION For the MDRD and CKD-EPI formulas, the mean bias values decreased with increasing child age and these formulas were more accurate beyond an age cutoff of 14.3 and 14.2 years, respectively. For the CG and Schwartz formulas, the lowest mean bias values and the best accuracies were below an age cutoff of 10.8 and 10.9 years, respectively. Nevertheless, the accuracies of the formulas were still below the National Kidney Foundation Kidney Disease Outcomes Quality Initiative target to be validated in these age groups and, therefore, none of these formulas can be used to estimate GFR in children and adolescent populations.
Resumo:
This paper presents a study on the effect of blurred images in hand biometrics. Blurred images simulates out-of-focus effects in hand image acquisition, a common consequence of unconstrained, contact-less and platform-free hand biometrics in mobile devices. The proposed biometric system presents a hand image segmentation based on multiscale aggregation, a segmentation method invariant to different changes like noise or blurriness, together with an innovative feature extraction and a template creation, oriented to obtain an invariant performance against blurring effects. The results highlight that the proposed system is invariant to some low degrees of blurriness, requiring an image quality control to detect and correct those images with a high degree of blurriness. The evaluation has considered a synthetic database created based on a publicly available database with 120 individuals. In addition, several biometric techniques could benefit from the approach proposed in this paper, since blurriness is a very common effect in biometric techniques involving image acquisition.
Resumo:
tWatercore distribution inside apple fruit (block or radial), and its incidence (% of tissue) were relatedto the effect of solar radiation inside the canopy as measured by a set of low-cost irradiation sensors.221 samples were harvested in two seasons from the top and the bottom of the canopy and submittedto the non-invasive and non-destructive technique of magnetic resonance imaging (MRI) in order toobtain 20 inner tomography slices from each fruit and analyze the damaged areas using an interactive3D segmentation method. The number of fruit corresponding to each type of damage and the relevantpercentage were calculated and it was found that apples from the top of the tree were mainly of the radialtype (84%) and had more watercore (approx. 5% more) than apples from the bottom (65% radial). From theimage segmentation, the Euler number, a morphometric parameter, was extracted from the segmentedimages and related to the type of watercore symptoms. Apples with block watercore were grouped inEuler numbers between −400 and 400 with a small evolution. For apples with radial development, theEuler number was highly negative: up to −1439. Significant differences were also found regarding sugarcomposition, with higher fructose and total sugar contents in apples from the upper canopy, compared tothose in the lower canopy location. In the seasons studied (2011 and 2012), significantly higher sorbitoland lower sucrose and fructose contents were found in watercore-affected tissue compared to the healthytissue of affected apples and also compared to healthy apples.
Resumo:
This paper describes a fully automatic simultaneous lung vessel and airway enhancement filter. The approach consists of a Frangi-based multiscale vessel enhancement filtering specifically designed for lung vessel and airway detection, where arteries and veins have high contrast with respect to the lung parenchyma, and airway walls are hollow tubular structures with a non negative response using the classical Frangi's filter. The features extracted from the Hessian matrix are used to detect centerlines and approximate walls of airways, decreasing the filter response in those areas by applying a penalty function to the vesselness measure. We validate the segmentation method in 20 CT scans with different pathological states within the VESSEL12 challenge framework. Results indicate that our approach obtains good results, decreasing the number of false positives in airway walls.