996 resultados para Secondary magnetic phasis
Resumo:
The effect of the La3+ and Gd3+ co-doping on the structure, electric and magnetic properties of BiFeO3 (BFO) ceramics are investigated. For the compositions (x=0 and 0 <= y <= 0.15) in the perovskite structured LaxGdyBi1-xFeO3 system, a tiny residual phase of Bi2Fe4O9 is noticed. Such a secondary phase is suppressed with the incorporation of `La' content (x). The magnitude of dielectric constant (epsilon(r) increases progressively by increasing the `La' content from x=0 to 0.15 with a remarkable decrease of dielectric loss. For x=0.15, the system LaxGdyBi1-x(x+y)FeO3 exhibits highest remanent magnetization (M-r) of 0.18 emu/g and coercive magnetic field (H-c) of similar to 1 Tin the presence of external magnetic field of 9 T at 300 K. The origin of enhanced dielectric and magnetic properties of LaxGdyBil (x+y)Fe03 and the role of doping elements, La3+, Gd3+ has been discussed. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
An orthorhombic DyMnO3 single crystal has been studied in magnetic fields up to 14 T and between 3 K and room temperature. The field dependent ordering temperature of Dy moments is deduced. The paramagnetic Curie Weiss behavior is related mainly to the Dy3+sublattice whereas the Mn sublattice contribution plays a secondary role. DC magnetization measurements show marked anisotropic features, related to the anisotropic structure of a cubic system stretched along a body diagonal, with a magnetic easy axis parallel to the crystallographic b axis. A temperature and field dependent spin flop transition is observed below 9 K, when relatively weak magnetocrystalline anisotropy is overcome by magnetic fields up to 1.6 T. © 2013 Elsevier B.V.
Resumo:
In this paper we report about the electrical properties of La 0.7Ca0.3MnO3 compounds substituted by copper on the manganese site and/or deliberately contaminated by SiO2 in the reactant mixture. Several phenomena have been observed and discussed. SiO2 addition leads to the formation of an apatite-like secondary phase that affects the electrical conduction through the percolation of the charge carriers. On the other hand, depending on the relative amounts of copper and silicon, the temperature dependence of the electrical resistivity can be noticeably modified: our results enable us to compare the effects of crystallographic vacancies on the A and B sites of the perovskite with the influence of the copper ions substituted on the manganese site. The most original result occurs for the compounds with a small ratio Si/Cu, which display double-peaked resistivity vs. temperature curves. © 2003 Elsevier B.V. All rights reserved.
Resumo:
IMPORTANCE: Forward models predict the sensory consequences of planned actions and permit discrimination of self- and non-self-elicited sensation; their impairment in schizophrenia is implied by an abnormality in behavioral force-matching and the flawed agency judgments characteristic of positive symptoms, including auditory hallucinations and delusions of control. OBJECTIVE: To assess attenuation of sensory processing by self-action in individuals with schizophrenia and its relation to current symptom severity. DESIGN, SETTING, AND PARTICIPANTS: Functional magnetic resonance imaging data were acquired while medicated individuals with schizophrenia (n = 19) and matched controls (n = 19) performed a factorially designed sensorimotor task in which the occurrence and relative timing of action and sensation were manipulated. The study took place at the neuroimaging research unit at the Institute of Cognitive Neuroscience, University College London, and the Maudsley Hospital. RESULTS: In controls, a region of secondary somatosensory cortex exhibited attenuated activation when sensation and action were synchronous compared with when the former occurred after an unexpected delay or alone. By contrast, reduced attenuation was observed in the schizophrenia group, suggesting that these individuals were unable to predict the sensory consequences of their own actions. Furthermore, failure to attenuate secondary somatosensory cortex processing was predicted by current hallucinatory severity. CONCLUSIONS AND RELEVANCE: Although comparably reduced attenuation has been reported in the verbal domain, this work implies that a more general physiologic deficit underlies positive symptoms of schizophrenia.
Resumo:
Background: Short and long interspersed elements (SINEs and LINEs, respectively), two types of retroposons, are active in shaping the architecture of genomes and powerful tools for studies of phylogeny and population biology. Here we developed special protocol to apply biotin-streptavidin bead system into isolation of interspersed repeated sequences rapidly and efficiently, in which SINEs and LINEs were captured directly from digested genomic DNA by hybridization to bead-probe complex in solution instead of traditional strategy including genomic library construction and screening. Results: A new couple of SINEs and LINEs that shared an almost identical 3'tail was isolated and characterized in silver carp and bighead carp of two closely related species. These SINEs (34 members), designated HAmo SINE family, were little divergent in sequence and flanked by obvious TSD indicated that HAmo SINE was very young family. The copy numbers of this family was estimated to 2 x 10(5) and 1.7 x 10(5) per haploid genome by Real-Time qPCR, respectively. The LINEs, identified as the homologs of LINE2 in other fishes, had a conserved primary sequence and secondary structures of the 3'tail region that was almost identical to that of HAmo SINE. These evidences suggest that HAmo SINEs are active and amplified recently utilizing the enzymatic machinery for retroposition of HAmoL2 through the recognition of higher-order structures of the conserved 42-tail region. We analyzed the possible structures of HAmo SINE that lead to successful amplification in genome and then deduced that HAmo SINE, SmaI SINE and FokI SINE that were similar in sequence each other, were probably generated independently and created by LINE family within the same lineage of a LINE phylogeny in the genomes of different hosts. Conclusion: The presented results show the advantage of the novel method for retroposons isolation and a pair of young SINE family and its partner LINE family in two carp fishes, which strengthened the hypotheses containing the slippage model for initiation of reverse transcription, retropositional parasitism of SINEs on LINEs, the formation of the stem loop structure in 3'tail region of some SINEs and LINEs and the mechanism of template switching in generating new SINE family.
Resumo:
Nickel-doped ZnO (Zn1-xNixO) have been produced using rf magnetron sputtering. X-ray diffraction measurements revealed that nickel atoms were successfully incorporated into ZnO host matrix without forming any detectable secondary phase. Ni 2p core-level photoemission spectroscopy confirmed this result and suggested Ni hits it chemical valence of 2 +. According to the . We studied the electronic magnetization measurements, no ferromagnetic but paramagnetic behavior was found for Zn0.86Ni0.14O. We studied the electronic structure of Zn0.86Ni0.14O by valence-band photoemission spectroscopy. The spectra demonstrate a structure at similar to 2 eV below the Fermi energy E-F, which is of Ni 3d origin. No emission was found at E-A, suggesting the insulating nature of the film. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The Isochronous Mass Spectrometry is a high accurate mass spectrometer. A secondary electrons time detector has been developed and used for mass measurements. Secondary electrons from a thin carbon foil are accelerated by ail electric field and deflected 180 degrees by a magnetic field onto a micro-channel plate. The time detector has been tested with alpha particles and a time resolution of 197 ps (FWHM) was obtained in the laboratory. A mass resolution around 8 x 10(-6) For Delta m/m was achieved by using this time detector in a pilot mass measurement experiment.
Resumo:
The crystal structure and magnetic properties of Sn1-xFexO2 nanograins synthesized by simple hydrothermal method using SnCl4 center dot 5H(2)O and FeCl3 center dot 6H(2)O as raw materials are studied. No secondary phase was found in the XRD spectrum. The linear change of lattice volume for different Fe content strongly supports that the Fe3+ substitutes Sn4+ in SnO2 lattice. A Raman and IR spectra study indicated that the Fe incorporates into the SnO2 lattice. Both ferromagnetic and paramagnetic signals are detected in the Mossbauer spectra. The Sn1-xFexO2 (x <= 0.10) samples show room-temperature ferromagnetism (RTFM) and the saturation magnetization increased with increasing Fe percent. Fe ions present three kinds of magnetic behaviors including paramagnetic, ferromagnetic, and antiferromagnetic in the samples observed by investigation of the M-H and M-T curves. The weak RTFM was due to only a fraction of Fe ions contributing to magnetic-order coupling mediated by oxygen vacancy.
Resumo:
The dilute magnetic semiconductor of Sn1-x-yMnxFeyO2 (0 <= x <= 0.10, 0 <= y <= 0.10) Were syhthesized with the hydrothermal method using SnCl4, Mn(CH3COO)(2) center dot 4H(2)O and FeCl3 center dot 6H(2)O as the raw materials. The structure, morphologies and magnetic properties of the sample were characterized via X-ray powder diffractometer(XRD), transmission electron microscopy(TEM), Raman spectrum and superconducting and quantum interference device(SQUIT), and Mossbeaur spectrum. No secondary phase was found in the XRD spectrum. The morphology of the samples is affected by the kind or the mount of transition metal. The local vibrating model-of Mn Positioned SnO2 sites was found in Raman spectrum. The measured magnetic results indicate that when x = 0.10, y = 0, the sample exhibits strong magnetization in low-temperature (5 K), but the magnetization decrease rapidly at room. temperature; In contrast, when x = 0, y = 0.1, the sample's magnetization and coercivity are both small, but being temperature independent. Mossbeaur spectra indicates that part of the Fe is ferromagnetic coupled, and the simulating results indicate that the ferromagnetic character is intrinsic.
Resumo:
A general procedure to determine the absolute configuration of cyclic secondary amines with Mosher's NMR method is demonstrated, with assignment of absolute configuration of isoanabasine as an example. Each Mosher amide can adopt two stable conformations (named rotamers) caused by hindered rotation around amide C-N bond. Via a three-step structural analysis of four rotamers, the absolute configuration of (-)-isoanabasine is deduced to be (R) on the basis of Newman projections, which makes it easy to understand and clarify the application of Mosher's method to cyclic secondary amines. Furthermore, it was observed that there was an unexpected ratio of rotamers of Mosher amide derived from (R)-isoanabasine and (R)-Mosher acid. This phenomenon implied that it is necessary to distinguish the predominant rotamer from the minor one prior to determining the absolute configuration while using this technique.
Resumo:
The pKa values of ionizable groups in proteins report the free energy of site-specific proton binding and provide a direct means of studying pH-dependent stability. We measured histidine pKa values (H3, H22, and H105) in the unfolded (U), intermediate (I), and sulfate-bound folded (F) states of RNase P protein, using an efficient and accurate nuclear magnetic resonance-monitored titration approach that utilizes internal reference compounds and a parametric fitting method. The three histidines in the sulfate-bound folded protein have pKa values depressed by 0.21 ± 0.01, 0.49 ± 0.01, and 1.00 ± 0.01 units, respectively, relative to that of the model compound N-acetyl-l-histidine methylamide. In the unliganded and unfolded protein, the pKa values are depressed relative to that of the model compound by 0.73 ± 0.02, 0.45 ± 0.02, and 0.68 ± 0.02 units, respectively. Above pH 5.5, H22 displays a separate resonance, which we have assigned to I, whose apparent pKa value is depressed by 1.03 ± 0.25 units, which is ∼0.5 units more than in either U or F. The depressed pKa values we observe are consistent with repulsive interactions between protonated histidine side chains and the net positive charge of the protein. However, the pKa differences between F and U are small for all three histidines, and they have little ionic strength dependence in F. Taken together, these observations suggest that unfavorable electrostatics alone do not account for the fact that RNase P protein is intrinsically unfolded in the absence of ligand. Multiple factors encoded in the P protein sequence account for its IUP property, which may play an important role in its function.
Resumo:
The effects of a constant uniform magnetic field on dendritic solidification were investigated using a 2-dimensional enthalpy based numerical model. The interaction between thermoelectic currents and the magnetic field generates a Lorentz force that creates a flow. This flow causes a change in the morphology of the dendrite; secondary growth is promoted on one side of the dendrite arm and the tip velocity of the primary arm is increased.
Resumo:
The effects of a constant uniform magnetic field on thermoelectric currents during dendritic solidification were investigated using a two-dimensional enthalpy based numerical model. Using an approximation for three-dimensional unconstricted growth, the resulting Lorentz forces generate a circulating flow influencing the solidification pattern. Under the presence of a strong magnetic field secondary growth on the clockwise side of the primary arm of the dendrite was encouraged, whereas the anticlockwise side is suppressed due to a reduction in local free energy. The preferred direction of growth rotated in the clockwise sense under an anticlockwise flow. The tip velocity is significantly increased compared with growth in stagnant flow. This is due to a small recirculation at the tip of the dendrite; bringing in colder liquid and lowering the concentration of solute.
Resumo:
The growth of magnetic fields in the density gradient of a rarefaction wave has been observed in simulations and in laboratory experiments. The thermal anisotropy of the electrons, which gives rise to the magnetic instability, is maintained by the ambipolar electric field. This simple mechanism could be important for the magnetic field amplification in astrophysical jets or in the interstellar medium ahead of supernova remnant shocks. The acceleration of protons and the generation of a magnetic field by the rarefaction wave, which is fed by an expanding circular plasma cloud, is examined here in form of a 2D particle-in-cell simulation. The core of the plasma cloud is modeled by immobile charges, and the mobile protons form a small ring close to the cloud's surface. The number density of mobile protons is thus less than that of the electrons. The protons of the rarefaction wave are accelerated to 1/10 of the electron thermal speed, and the acceleration results in a thermal anisotropy of the electron distribution in the entire plasma cloud. The instability in the rarefaction wave is outrun by a TM wave, which grows in the dense core distribution, and its magnetic field expands into the rarefaction wave. This expansion drives a secondary TE wave. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769128]
Resumo:
Este trabalho centra-se na investigação da possibilidade de se conseguir um semicondutor magnético diluído (SMD) baseado em ZnO. Foi levado a cabo um estudo detalhado das propriedades magnéticas e estruturais de estruturas de ZnO, nomeadamente nanofios (NFs), nanocristais (NCs) e filmes finos, dopadas com metais de transição (MTs). Foram usadas várias técnicas experimentais para caracterizar estas estruturas, designadamente difracção de raios-X, microscopia electrónica de varrimento, ressonância magnética, SQUID, e medidas de transporte. Foram incorporados substitucionalmente nos sítios do Zn iões de Mn2+ e Co2+ em ambos os NFs e NCs de ZnO. Revelou-se para ambos os iões dopantes, que a incorporação é heterogénea, uma vez que parte do sinal de ressonância paramagnética electrónica (RPE) vem de iões de MTs em ambientes distorcidos ou enriquecidos com MTs. A partir das intensidades relativas dos espectros de RPE e de modificações da superfície, demonstra-se ainda que os NCs exibem uma estrutura core-shell. Os resultados, evidenciam que, com o aumento da concentração de MTs, a dimensão dos NCs diminui e aumentam as distorções da rede. Finalmente, no caso dos NCs dopados com Mn, obteve-se o resultado singular de que a espessura da shell é da ordem de 0.3 nm e de que existe uma acumulação de Mn na mesma. Com o objectivo de esclarecer o papel dos portadores de carga na medição das interacções ferromagnéticas, foram co-dopados filmes de ZnO com Mn e Al ou com Co e Al. Os filmes dopados com Mn, revelaram-se simplesmente paramagnéticos, com os iões de Mn substitucionais nos sítios do Zn. Por outro lado, os filmes dopados com Co exibem ferromagnetismo fraco não intrínseco, provavelmente devido a decomposição spinodal. Foram ainda efectuados estudos comparativos com filmes de ligas de Zn1-xFexO. Como era de esperar, detectaram-se segundas fases de espinela e de óxido de ferro nestas ligas; todas as amostras exibiam curvas de histerese a 300 K. Estes resultados suportam a hipótese de que as segundas fases são responsáveis pelo comportamento magnético observado em muitos sistemas baseados em ZnO. Não se observou nenhuma evidência de ferromagnetismo mediado por portadores de carga. As experiências mostram que a análise de RPE permite demonstrar directamente se e onde estão incorporados os iões de MTs e evidenciam a importância dos efeitos de superfície para dimensões menores que ~15 nm, para as quais se formam estruturas core-shell. As investigações realizadas no âmbito desta tese demonstram que nenhuma das amostras de ZnO estudadas exibiram propriedades de um SMD intrínseco e que, no futuro, são necessários estudos teóricos e experimentais detalhados das interacções de troca entre os iões de MTs e os átomos do ZnO para determinar a origem das propriedades magnéticas observadas.