942 resultados para Seasonal and interannual monitoring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eastern Canadian Arctic is home to Canada’s largest Indigenous population, which depends on local freshwater sources for drinking water. However, small watersheds have rarely been analyzed for long-term hydrologic response to changing climate. This study aims to address this issue by examining the Apex River, a small watershed with a long hydroclimatic record, near Iqaluit, Nunavut. Particular emphasis was placed on the long-term changes in climate and river discharge, and the seasonal variability of water sources between two snapshots in time, 1983 and 2013. Long-term hydrological data were obtained from gauge station 10UH002, operated by Environment and Climate Change Canada, and long-term meteorological data were acquired from Environment Canada–operated stations near Iqaluit Airport. Breakpoint analysis suggested that long-term mean annual surface air temperatures have increased since 1994. In contrast, no long-term total precipitation or annual discharge changes were observed. However, river flow initiation and cessation analyses of the Apex River flow season indicates that flow extended into the autumn since the 2000s. The 2013 flow season lasted 44 days longer than the 1983 flow season. Systematic river sampling was undertaken throughout the 2013 thaw season to determine contributing proportions of event (snowmelt or rainfall) and pre-event (baseflow) water to river runoff. Results from the stable isotope hydrograph separation for 2013 were compared to findings for 1983. Snow was the main source of water to the river during the snowmelt period in 1983 and 2013, however baseflow was still an important contributor. Although there was high similarity of water sources early in the season in 1983 and 2013, the two years differed during the autumn. In 2013 there was a high rainfall runoff response that was not present in 1983, suggesting high release of late-season sub-surface water storage and an increased sensitivity to late-season rainfall events in 2013. This research provides insights into the hydrologic response of the Apex River to long-term climatic change, and highlights the need for high-quality precipitation and discharge data for effective long-term hydrological assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Estudos Marinhos e Costeiros, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of doubled CO2 concentration on the Asian summer monsoon is studied using a coupled ocean-atmosphere model. Both the mean seasonal precipitation and interannual monsoon variability are found to increase in the future climate scenario presented. Systematic biases in current climate simulations of the coupled system prevent accurate representation of the monsoon-ENSO teleconnection, of prime importance for seasonal prediction and for determining monsoon interannual variability. By applying seasonally varying heat flux adjustments to the tropical Pacific and Indian Ocean surface in the future climate simulation, some assessment can be made of the impact of systematic model biases on future climate predictions. In simulations where the flux adjustments are implemented, the response to climate change is magnified, with the suggestion that systematic biases may be masking the true impact of increased greenhouse gas forcing. The teleconnection between ENSO and the Asian summer monsoon remains robust in the future climate, although the Indo-Pacific takes on more of a biennial character for long periods of the flux-adjusted simulation. Assessing the teleconnection across interdecadal timescales shows wide variations in its amplitude, despite the absence of external forcing. This suggests that recent changes in the observed record cannot be distinguished from internal variations and as such are not necessarily related to climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] We present a new, process-based model of soil and stream water dissolved organic carbon (DOC): the Integrated Catchments Model for Carbon (INCA-C). INCA-C is the first model of DOC cycling to explicitly include effects of different land cover types, hydrological flow paths, in-soil carbon biogeochemistry, and surface water processes on in-stream DOC concentrations. It can be calibrated using only routinely available monitoring data. INCA-C simulates daily DOC concentrations over a period of years to decades. Sources, sinks, and transformation of solid and dissolved organic carbon in peat and forest soils, wetlands, and streams as well as organic carbon mineralization in stream waters are modeled. INCA-C is designed to be applied to natural and seminatural forested and peat-dominated catchments in boreal and temperate regions. Simulations at two forested catchments showed that seasonal and interannual patterns of DOC concentration could be modeled using climate-related parameters alone. A sensitivity analysis showed that model predictions were dependent on the mass of organic carbon in the soil and that in-soil process rates were dependent on soil moisture status. Sensitive rate coefficients in the model included those for organic carbon sorption and desorption and DOC mineralization in the soil. The model was also sensitive to the amount of litter fall. Our results show the importance of climate variability in controlling surface water DOC concentrations and suggest the need for further research on the mechanisms controlling production and consumption of DOC in soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, 40-yr ECMWF Re-Analysis (ERA-40) data are used for the description of the seasonal cycle and the interannual variability of the westerly jet in the Tibetan Plateau region. To complement results based on the analysis of monthly mean horizontal wind speeds, an occurrence-based jet climatology is constructed by identifying the locations of the jet axes at 6-hourly intervals throughout 1958–2001. Thus, a dataset describing the highly transient and localized features of jet variability is obtained. During winter and summer the westerly jet is located, respectively, to the south and north of the Tibetan Plateau. During the spring and autumn seasons there are jet transitions from south to north and vice versa. The median dates for these transitions are 28 April and 12 October. The spring transition is associated with large interannual variations, while the fall transition occurs more reliably within a 3-week period. The strength of the jet exhibits a peculiar seasonal cycle. During northward migration in April/May, the jet intensity weakens and its latitudinal position varies largely. In some springs, there are several transitions and split configurations occur before the jet settles in its northern summer position. In June, a well-defined and unusually strong jet reappears at the northern flanks of the Tibetan Plateau. In autumn, the jet gradually but reliably recedes to the south and is typically more intense than in spring. The jet transitions between the two preferred locations follow the seasonal latitudinal migration of the jet in the Northern Hemisphere. An analysis of interannual variations shows the statistical relationship between the strength of the summer jet, the tropospheric meridional temperature gradient, and the all-India rainfall series. Both this analysis and results from previous studies point to the particular dynamical relevance of the onsetting Indian summer monsoon precipitation and the associated diabatic heating for the formation of the strong summer jet. Finally, an example is provided that illustrates the climatological significance of the jet in terms of the covariation between the jet location and the spatial precipitation distribution in central Asia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We establish the first inter-model comparison of seasonal to interannual predictability of present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four state-of-the-art global climate models. For Arctic sea-ice extent and volume, there is potential predictive skill for lead times of up to three years, and potential prediction errors have similar growth rates and magnitudes across the models. Spatial patterns of potential prediction errors differ substantially between the models, but some features are robust. Sea-ice concentration errors are largest in the marginal ice zone, and in winter they are almost zero away from the ice edge. Sea-ice thickness errors are amplified along the coasts of the Arctic Ocean, an effect that is dominated by sea-ice advection. These results give an upper bound on the ability of current global climate models to predict important aspects of Arctic climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intraseasonal and interannual variability of extreme wet and dry anomalies over southeastern Brazil and the western subtropical South Atlantic Ocean are investigated. Precipitation data are obtained from the Global Precipitation Climatology Project (GPCP) in pentads during 23 austral summers (December-February 1979/80-2001/02). Extreme wet (dry) events are defined according to 75th (25th) percentiles of precipitation anomaly distributions observed in two time scales: intraseasonal and interannual. The agreement between the 25th and 75th percentiles of the GPCP precipitation and gridded precipitation obtained from stations in Brazil is also examined. Variations of extreme wet and dry anomalies on interannual time scales are investigated along with variations of sea surface temperature (SST) and circulation anomalies. The South Atlantic SST dipole seems related to interannual variations of extreme precipitation events over southeastern Brazil. It is shown that extreme wet and dry events in the continental portion of the South Atlantic convergence zone (SACZ) are decoupled from extremes over the oceanic portion of the SACZ and there is no coherent dipole of extreme precipitation regimes between tropics and subtropics on interannual time scales. On intraseasonal time scales, the occurrence of extreme dry and wet events depends on the propagation phase of extratropical wave trains and consequent intensification (weakening) of 200-hPa zonal winds. Extreme wet and dry events over southeastern Brazil and subtropical Atlantic are in phase on intraseasonal time scales. Extreme wet events over southeastern Brazil and subtropical Atlantic are observed in association with low-level northerly winds above the 75th percentile of the seasonal climatology over central-eastern South America. Extreme wet events on intraseasonal time scales over southeastern Brazil are more frequent during seasons not classified as extreme wet or dry on interannual time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquaculture of filter-feeding bivalve mollusks involves the fruitful conversion of marine particulate organic matter into premium protein of high nutritive value. Culture performance of bivalves is largely dependent on hydrological conditions and directly affected by e. g. temperature and chlorophyll levels. Accordingly, these parameters may be related with seasonality but also with oceanographic features combined with climate events. Yields of Pacific cupped oyster (Crassostrea gigas) reared at commercial procedures in suspended structures (long-lines) in a sheltered bay in Southern Brazil (Santa Catarina State, 27S 43'; 48 W 30') were evaluated in relation to local environmental conditions: sea surface temperature, chlorophyll a concentration, and associate effects of cold fronts events and El Nino and La Nina periods. Outputs from four consecutive commercial crop years were analyzed (2005/06, 2006/07, 2007/08, 2008/09) in terms of oyster survival and development time during the following grow-out phases of the culture cycle: seed to juvenile, juvenile to adult, adult to marketable. Since culture management and genetics were standardized significant differences verified among crop performance could be mostly related to environmental effects. Time series of temperature and chlorophyll a (remote sensing data) from crop periods displayed significant seasonal and interannual variation. As expected, performance during initial grow-out stages (seed to juvenile) was critical for final crop yield. Temperature was the main factor affecting survival in these initial stages with a trend of negative correlation, though not statistically significant. On the other hand, oyster development rate was significantly and positively affected by chlorophyll a concentration. Chlorophyll a values could be increased by upwelled cold nutrient-rich South Atlantic Central Water (SACW, related to predominant Northern winds) though further dependent on occurrence of Southern winds (cold fronts) to assist seawater penetration into the sheltered farming area. Lower salinity nutrient-rich northward drifted waters from La Plata River discharge may also result in chlorophyll a rise in the farming area. The El Nino period (July 2006 to February 2007) coincided with lower chlorophyll a levels in the farming site that may be related to both decreased number of cold fronts as well as predominance of Northern winds that retain northward spreading of La Plata River discharge waters. In contrast, the La Nina period (August 2007 to June 2008) corresponded to higher chlorophyll a values in the farming area by both upwelling of SACW and penetration of La Plata River discharge water assisted by increased occurrence of Southern winds and cold fronts. The recognition of the potentially changing climate and effects upon the environment will be an important step in planning future development of bivalve aquaculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parameters in the photosynthesis-irradiance (P-E) relationship of phytoplankton were measured at weekly to bi-weekly intervals for 20 yr at 6 stations on the Rhode River, Maryland (USA). Variability in the light-saturated photosynthetic rate, PBmax, was partitioned into interannual, seasonal, and spatial components. The seasonal component of the variance was greatest, followed by interannual and then spatial. Physiological models of PBmax based on balanced growth or photoacclimation predicted the overall mean and most of the range, but not individual observations, and failed to capture important features of the seasonal and interannual variability. PBmax correlated most strongly with temperature and the concentration of dissolved inorganic carbon (IC), with lesser correlations with chlorophyll a, diffuse attenuation coefficient, and a principal component of the species composition. In statistical models, temperature and IC correlated best with the seasonal pattern, but temperature peaked in late July, out of phase with PBmax, which peaked in September, coincident with the maximum in monthly averaged IC concentration. In contrast with the seasonal pattern, temperature did not contribute to interannual variation, which instead was governed by IC and the additional lesser correlates. Spatial variation was relatively weak and uncorrelated with ancillary measurements. The results demonstrate that both the overall distribution of PBmax and its relationship with environmental correlates may vary from year to year. Coefficients in empirical statistical models became stable after including 7 to 10 yr of data. The main correlates of PBmax are amenable to automated monitoring, so that future estimates of primary production might be made without labor-intensive incubations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blue whiting (Micromesistius poutassou, http://www.marinespecies.org/aphia.php?p=taxdetails&id=126439) is a small mesopelagic planktivorous gadoid found throughout the North-East Atlantic. This data contains the results of a model-based analysis of larvae captured by the Continuous Plankton Recorder (CPR) during the period 1951-2005. The observations are analysed using Generalised Additive Models (GAMs) of the the spatial, seasonal and interannual variation in the occurrence of larvae. The best fitting model is chosen using the Aikaike Information Criteria (AIC). The probability of occurrence in the continous plankton recorder is then normalised and converted to a probability distribution function in space (UTM projection Zone 28) and season (day of year). The best fitting model splits the distribution into two separate spawning grounds north and south of a dividing line at 53 N. The probability distribution is therefore normalised in these two regions (ie the space-time integral over each of the two regions is 1). The modelled outputs are on a UTM Zone 28 grid: however, for convenience, the latitude ("lat") and longitude ("lon") of each of these grid points are also included as a variable in the NetCDF file. The assignment of each grid point to either the Northern or Southern component (defined here as north/south of 53 N), is also included as a further variable ("component"). Finally, the day of year ("doy") is stored as the number of days elapsed from and included January 1 (ie doy=1 on January 1) - the year is thereafter divided into 180 grid points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resolving species relationships and confirming diagnostic morphological characters for insect clades that are highly plastic, and/or include morphologically cryptic species, is crucial for both academic and applied reasons. Within the true fly (Diptera) family Chironomidae, a most ubiquitous freshwater insect group, the genera CricotopusWulp, 1874 and ParatrichocladiusSantos-Abreu, 1918 have long been taxonomically confusing. Indeed, until recently the Australian fauna had been examined in just two unpublished theses: most species were known by informal manuscript names only, with no concept of relationships. Understanding species limits, and the associated ecology and evolution, is essential to address taxonomic sufficiency in biomonitoring surveys. Immature stages are collected routinely, but tolerance is generalized at the genus level, despite marked variation among species. Here, we explored this issue using a multilocus molecular phylogenetic approach, including the standard mitochondrial barcode region, and tested explicitly for phylogenetic signal in ecological tolerance of species. Additionally, we addressed biogeographical patterns by conducting Bayesian divergence time estimation. We sampled all but one of the now recognized Australian Cricotopus species and tested monophyly using representatives from other austral and Asian locations. Cricotopus is revealed as paraphyletic by the inclusion of a nested monophyletic Paratrichocladius, with in-group diversification beginning in the Eocene. Previous morphological species concepts are largely corroborated, but some additional cryptic diversity is revealed. No significant relationship was observed between the phylogenetic position of a species and its ecology, implying either that tolerance to deleterious environmental impacts is a convergent trait among many Cricotopus species or that sensitive and restricted taxa have diversified into more narrow niches from a widely tolerant ancestor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the aim of elucidating the seasonal behaviour of rare earth elements (REEs), surface and groundwaters were collected under dry and wet conditions in different hydrological units of the Teviot Brook catchment (Southeast Queensland, Australia). Sampled waters showed a large degree of variability in both REE abundance and normalised patterns. Overall REE abundance ranged over nearly three orders of magnitude, and was consistently lower in the sedimentary bedrock aquifer (18ppt<∑REE<477ppt) than in the other hydrological systems studied. Abundance was greater in springs draining rhyolitic rocks (∑REE=300 and 2054ppt) than in springs draining basalt ranges (∑REE=25 and 83ppt), yet was highly variable in the shallow alluvial groundwater (16ppt<∑REE<5294ppt) and, to a lesser extent, in streamwater (85ppt<∑REE<2198ppt). Generally, waters that interacted with different rock types had different REE patterns. In order to obtain an unbiased characterisation of REE patterns, the ratios between light and middle REEs (R(M/L)) and the ratios between middle and heavy REEs (R(H/M)) were calculated for each sample. The sedimentary bedrock aquifer waters had highly evolved patterns depleted in light REEs and enriched in middle and heavy REEs (0.17and -0.16and extrusive rocks had relatively flat patterns (0.20and -0.16and median R(H/M)=-0.04), and waters from the shallow alluvial aquifer had very diverse patterns with important spatial variations. Samples collected from the alluvium exhibited an increasing influence of the sedimentary bedrock from upgradient to downgradient; typically they showed flat patterns in the upstream section of the alluvium (median R(M/L)=0.21 and median R(H/M)=-0.06) gradually evolving towards patterns depleted in light REEs and enriched in middle and heavy REEs downgradient (median R(M/L)=0.48 and median R(H/M)=0.38). To document the seasonal variations in REE patterns, the difference in ratios between dry and wet sampling campaigns was determined for each repeated sampling location. Contributions from the sedimentary bedrock water to the alluvium during the wet season were identified at two locations (increase from R(H/M)=0.03 and 0.35 to R(H/M)=0.62 and 0.89). The effect of recharge through fractured igneous rocks was also observed in two boreholes intercepting the sedimentary bedrock, where the freshly recharged waters likely contributed to the deeper groundwater flow during the wet season (decrease from R(M/L)=0.81 and 0.56 to R(M/L)=0.46 and 0.17). Results from this study suggest that REEs may be usefully applied as indicators of recharge processes and inter-aquifer mixing. They also underline the importance of conducting seasonal sampling campaigns to capture possible short-term variations in REE patterns and abundance, which is essential to enable a better understanding of hydrological and hydrochemical processes in complex geological settings