999 resultados para Sealing Materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present investigation observed the sealing ability of low shrinkage composite resins in large and deep cavities, placed and photocured in one increment. Large, deep cavities (5.0 mm diameter and 2.5 mm deep) surrounded by enamel were prepared in bovine teeth, which were then divided into five groups. Groups 1, 2, 3 and 4: acid conditioning + Adper Single Bond (3M/ESPE, St Paul, MN, USA) and restoration with Aelite LS Posterior (BISCO Inc. Schaumburg, IL, USA) (G1); Filtek Z-350 (3M/ESPE,St Paul, MN, USA) (G2); Filtek Z-350 Flow (3M/ESPE, St Paul, MN, USA) (G3); Premisa (KERR Corporation, Orange, CA, USA) (G4). Group 5: Silorane Adhesive system (3M/ESPE, St Paul, MN, USA) + restoration with Filtek Low Shrinkage Posterior P90 (3M/ESPE, St Paul, MN, USA). After polymerization, the teeth were immersed in 0.5% basic fuchsine solution and immediately washed. Using the Imagetool Software, the extent of dye along the margins was calculated as a percentage of total perimeter. The restorations were then transversally sectioned and the depth of dye penetration was calculated in mm, using the same software. Kruskal-Wallis analysis for all groups showed no statistical differences for extent (p = 0.54) or depth (p = 0.8364) of dye penetration. According to this methodology, the so-called low shrinkage composite resins had the same sealing ability compared to regular and flowable nanocomposite materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to value the possibility to join, for pulsed Nd:YAG laser welding, thin foils lap joints for sealing components in corrosive environment. Experimental investigations were carried out using a pulsed neodymium: yttrium aluminum garnet laser weld to examine the influence of the pulse energy in the characteristics of the weld fillet. The pulse energy was varied from 1.0 to 2.5 J at increments of 0.25 J with a 4 ms pulse duration. The base materials used for this study were AISI 316L stainless steel and Ni-based alloys foils with 100 mu m thickness. The welds were analyzed by electronic and optical microscopy, tensile shear tests and micro hardness. The results indicate that pulse energy control is of considerable importance to thin foil weld quality because it can generate good mechanical properties and reduce discontinuities in weld joints. The ultimate tensile strength of the welded joints increased at first and then decreased as the pulse energy increased. In all the specimens, fracture occurred in the top foil heat-affected zone next to the fusion line. The microhardness was almost uniform across the parent metal, HAZ and weld metal. A slight increase in the fusion zone and heat-affected zone compared to those measured in the base metal was observed. This is related to the microstructural refinement in the fusion zone, induced by rapid cooling of the laser welding. The process appeared to be very sensitive to the gap between couples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The objective of this study was to clinically evaluate sealed composite restorations after 10 years and compare their behavior with respect to controls. Methods and Materials: The cohort consisted of 20 patients aged 18 to 80 years with 80 composite restorations. All participants in the sealing and no-treatment groups presented with clinical features for the marginal adaptation that deviated from the ideal and were rated Bravo (United States Public Health Service criteria). Composites with Alfa values for the marginal adaptation were used as the positive control. Results: The marginal adaptation behavior was similar between the sealing and control (+) groups, with a high frequency of Bravo values in the 10th year (80% and 51%, respectively). Most of the no-treatment (-) group maintained the Bravo values (91%) for 10 years, although some restorations (9%) progressed to Charlie values. The anatomy parameter differed significantly between the first and 10th years, with deterioration in all three groups (p,0.05). The secondary caries parameter had a similar behavior in the three groups (p.0.05). Conclusions: Sealing the margins of the composite resin restorations had no significant effect compared with the control groups, under the conditions of this study. Sealing the restorations substantially improved the marginal staining and marginal adaptation parameters, although by the tenth year they were similar to the group without intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the ability of BioRoot RCS, a tricalcium silicate-based root canal sealer and AH Plus to effectively fill the root canals of contralateral teeth using three evaluation methods, and to investigate also the correlation between the methods. The prepared root canals of ten pairs of contralateral mandibular premolar teeth were filled with gutta-percha and sealer using lateral compaction. The percentage of voids within the root canal was assessed by micro-computed tomography, whilst sealing ability was investigated by fluid transport and leakage of fluorescent microspheres. The interaction of sealer with dentine, and sealer penetration were assessed by confocal microscopy. The void volume, fluid flow, microsphere leakage and sealer interaction with dentine for both materials were compared. Nonparametric (Mann-Whitney) tests were used to compare the % void and fluid transport of the two sealers. Spearman correlation was used to assess the pairwise relationships between the techniques. The level of significance was set to 0.05. BioRoot RCS exhibited significantly more percentage of voids than AH Plus. There was no difference in fluid flow and microsphere penetration. BioRoot RCS exhibited a different pattern of sealer penetration and interaction with the dentine walls compared to AH Plus. For both materials, the pairwise correlations between the three techniques were close to zero, indicating weak relationships. MicroCT analysis revealed a higher void volume for BioRoot RCS. The other techniques did not show a difference between the sealing ability of the sealers. The correlation between the three ex vivo methods of assessment was weak demonstrating their complementarity rather than their concordance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of this study was to compare the correspondence between gap formation and apical microleakage in root canals filled with epoxy resin-based (AH Plus) combined or not with resinous primer or with a dimethacrylate-based root canal sealer (Epiphany). Material and Methods: Thirty-nine lower single-rooted human premolars were filled by the lateral condensation technique (LC) and immersed in a 50-wt% aqueous silver nitrate solution at 37 degrees C (24 h). After longitudinal sectioning, epoxy resin replicas were made from the tooth specimens. Both the replicas and the specimens were prepared for scanning electron microscopy (SEM). The gaps were observed in the replicas. Apical microleakage was detected in the specimens by SEM/energy dispersive spectroscopy (SEM/EDS). The data were analyzed statistically using an Ordinal Logistic Regression model and Analysis of Correspondence (alpha=0.05). Results: Epiphany presented more regions containing gaps between dentin and sealer (p<0.05). There was correspondence between the presence of gaps and microleakage (p<0.05). Microleakage was similar among the root-filling materials (p>0.05). Conclusions: The resinous primer did not improve the sealing ability of AH Plus sealer and the presence of gaps had an effect on apical microleakage for all materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to evaluate, ex vivo, the nanoleakage in dentinal tubules, the linear infiltration of silver nitrate in the dentin wall/root-end filling material interface, and the presence of gaps in this interface in root-end cavities filled with 4 filling materials. Forty-eight disto-buccal root canals of maxillary molars were instrumented and filled. Retrograde cavities were prepared with ultrasonic points (apical 2 mm). The samples were divided into 2 control groups (n = 4) and 4 experimental groups (n = 10): Group I white mineral trioxide aggregate (MTA); Group II Super EBA; Group III Portland cement; and Group IV Sealer 26. After 1 week, the specimens were subjected to silver nitrate and prepared for SEM (backscattered electrons). In the apical-apical segment, an area with significantly higher leakage was observed for Super EBA, followed by Portland cement, MTA, and Sealer 26 (P = 0.0054). In the medium and cervical segments, all materials showed the same leakage behavior (P = 0.1815 and P = 0.1723, respectively). The linear infiltration at the dentin wall/root-end filling material interface was higher with Super EBA than the other groups. No differences in the percentage of gaps along the 3 mm of dentin wall/root-end filling material interface between the 4 materials were evident (P > 0.05). Nanoleakage occurred mainly in the apical segment of the samples, and Super EBA showed the highest values. The area and linear leakage were lower in the middle and coronal segments, regardless of the root-end filling material. No material perfectly sealed the root-end cavities, which allowed for the leakage occurrence. Microsc. Res. Tech. 75:796800, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present work attempts have been made to study the glass transition temperature of alternative mould materials by using both microwave heating and conventional oven heating. In this present work three epoxy resins, namely R2512, R2515 and R2516, which are commonly used for making injection moulds have been used in combination with two hardeners H2403 and H2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. In order to distinguish the effects between the microwave and conventional heating, a number of experiments were performed to test their mechanical properties such as tensile and flexural strengths. Additionally, differential scanning calorimeter technique was implemented to measure the glass transition temperature on both microwave and conventional heating. This study provided necessary evidences to establish that microwave heated mould materials resulted with higher glass transition temperature than the conventional heating. Finally, attempts were also made to study the microstructure of microwave-cured materials by using a scanning electron microscope in order to analyze the morphology of cured specimens.