967 resultados para Sea-power
Resumo:
One of the key systems of a Wave Energy Converter for extraction of wave energy is the Power Take-Off (PTO) device. This device transforms the mechanical energy of a moving body into electrical energy. This paper describes the model of an innovative PTO based on independently activated double-acting hydraulic cylinders array. The model has been developed using a simulation tool, based on a port-based approach to model hydraulics systems. The components and subsystems used in the model have been parameterized as real components and their values experimentally obtained from an existing prototype. In fact, the model takes into account most of the hydraulic losses of each component. The simulations show the flexibility to apply different restraining torques to the input movement depending on the geometrical configuration and the hydraulic cylinders on duty, easily modified by a control law. The combination of these two actions allows suitable flexibility to adapt the device to different sea states whilst optimizing the energy extraction. The model has been validated using a real test bench showing good correlations between simulation and experimental tests.
Resumo:
The proper matching of the pull exerted by a trawler and the size of trawl is important for maximizing the catching efficiency. The available pull is more dependent on the propeller and its working conditions than the installed engine power. The normal practice is to directly connect net size to the installed power in the boat by formulae without reference to the prope1ler dimensions or the available trawling pull and this is not adequate to find out the optimum combination. By the method outlined in this paper, the accurate calculation of trawling pull is possible by taking into account only the propeller diameter, pitch and r. p. m. The predictions by the method are compared for trawlers with powers between 30 and 60 hp and agreement is found to be within + 5%. The power absorbed by the propeller in trawling condition can also be calculated by this method for checking whether the engine is being overloaded.
Resumo:
A method is presented for predicting the variance of the energy levels in a built-up system to accompany the mean values predicted by SEA. Closed form expressions for the variance are obtained in terms of the standard SEA parameters and an additional set of parameters αk that describe the nature of the power input to each subsystem k, and αks that describe the nature of the coupling between subsystems k and s.
Resumo:
Rare earth elements (REEs) of 91 fine-grained bottom sediment samples from five major rivers in Korea (the Han, Keum, and Yeongsan) and China (the Changjiang and Huanghe) were studied to investigate their potential as source indicator for Yellow Sea shelf sediments, this being the first synthetic report on REE trends for bottom sediments of these rivers. The results show distinct differences in REE contents and their upper continental crust (UCC)-normalized patterns: compared to heavy rare earth elements (HREEs), light rare earth elements (LREEs) are highly enriched in Korean river sediments, in contrast to Chinese river sediments that have a characteristic positive Eu anomaly. This phenomenon is observed also in primary source rocks within the river catchments. This suggests that source rock composition is the primary control on the REE signatures of these river sediments, due largely to variations in the levels of chlorite and monazite, which are more abundant in Korean bottom river sediments. Systematic variations in I LREE pound/I HREE pound ratios, and in (La/Yb)-(Gd/Yb)(UCC) but also (La/Lu)-(La/Y)(UCC) and (La/Y)-(Gd/Lu)(UCC) relations have the greatest discriminatory power. These findings are consistent with, but considerably expand on the limited datasets available to date for suspended sediments. Evidently, the REE fingerprints of these river sediments can serve as a useful diagnostic tool for tracing the provenance of sediments in the Yellow Sea, and for reconstructing their dispersal patterns and the circulation system of the modern shelf, as well as the paleoenvironmental record of this and adjoining marginal seas.
Resumo:
Satellite and in situ observations in the equatorial Atlantic Ocean during 2002-03 show dominant spectral peaks at 40-60 days and secondary peaks at 10-40 days in sea level and thermocline within the intraseasonal period band (10-80 days). A detailed investigation of the dynamics of the intraseasonal variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Atlantic Ocean basin for the period 2000-03: one is forced by daily scatterometer winds from the Quick Scatterometer (QuikSCAT) satellite together with other forcing fields, and the other is forced by the low-passed 80-day version of the above fields. To help in understanding the role played by the wind-driven equatorial waves, a linear continuously stratified ocean model is also used. Within 3 degrees S-3 degrees N of the equatorial region, the strong 40-60-day sea surface height anomaly (SSHA) and thermocline variability result mainly from the first and second baroclinic modes equatorial Kelvin waves that are forced by intraseasonal zonal winds, with the second baroclinic mode playing a more important role. Sharp 40-50-day peaks of zonal and meridional winds appear in both the QuikSCAT and Pilot Research Moored Array in the Tropical Atlantic (PIRATA) data for the period 2002-03, and they are especially strong in 2002. Zonal wind anomaly in the central-western equatorial basin for the period 2000-06 is significantly correlated with SSHA across the equatorial basin, with simultaneous/ lag correlation ranging from-0.62 to 0.74 above 95% significance. Away from the equator (3 degrees-5 degrees N), however, sea level and thermocline variations in the 40-60-day band are caused largely by tropical instability waves (TIWs). On 10-40-day time scales and west of 10 degrees W, the spectral power of sea level and thermocline appears to be dominated by TIWs within 5 degrees S-5 degrees N of the equatorial region. The wind-driven circulation, however, also provides a significant contribution. Interestingly, east of 10 W, SSHA and thermocline variations at 10 40- day periods result almost entirely from wind-driven equatorial waves. During the boreal spring of 2002 when TIWs are weak, Kelvin waves dominate the SSHA across the equatorial basin (2 degrees S-2 degrees N). The observed quasi-biweekly Yanai waves are excited mainly by the quasi-biweekly meridional winds, and they contribute significantly to the SSHA and thermocline variations in 1 degrees-5 degrees N and 1 degrees-5 degrees S regions.
Resumo:
Direct air-sea flux measurements were made on RN Kexue #1 at 40 degrees S, 156 degrees E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-alpha hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme, There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results, Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heal flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.
Resumo:
Top predators, particularly seabirds, have repeatedly been suggested as indicators of marine ecosystem status. One region currently under pressure from human fisheries and climate change is the North Sea. Standardized seabird monitoring data have been collected on the Isle of May, an important seabird colony in the northwestern North Sea, over the last 10–20 years. Over this period oceanographic conditions have varied markedly, and between 1990 and 1999 a major industrial fishery for sandlance (Ammodytes marinus), the main prey of most seabird species, was prosecuted nearby. Sandlance fishing grounds close to seabird colonies down the east coast of the UK were closed in 2000 in an attempt to improve foraging opportunities for breeding seabirds, particularly black-legged kittiwakes (Rissa tridactyla). Initially this closure seemed to be beneficial for kittiwakes with breeding success recovering to pre-fishery levels. However, despite the ban continuing, kittiwakes and many other seabird species in the North Sea suffered severe breeding failures in 2004. In this paper, we test the predictive power of four previously established correlations between kittiwake breeding success and climatic/trophic variables to explain the observed breeding success at the Isle of May in 2004. During the breeding season, kittiwakes at this colony switch from feeding on 1+ group to 0 group sandlance, and results up until 2003 indicated that availability of both age classes had a positive effect on kittiwake breeding success. The low breeding success of kittiwakes in 2004 was consistent with the late appearance and small body size of 0 group sandlance, but at odds with the two variables likely to operate via 1 group availability (lagged winter sea surface temperature and larval sandlance cohort strength in 2003). The reason for the discrepancy is currently unknown, but analysis of 1 group sandlance body composition indicated that lipid content in 2004 was extremely low, and thus fish eaten by kittiwakes during pre-breeding and early incubation were likely to be of poor quality. Monitoring of reproductive success of kittiwakes, although useful, was clearly not sufficient to tease apart the complex causation underlying the 2004 event. Monitoring programs such as this, therefore, need to be complemented by detailed research to identify the mechanisms involved, and to attribute and predict the effects of natural and human-induced environmental change.
Resumo:
Understanding how invasive species spread is of particular concern in the current era of globalisation and rapid environmental change. The occurrence of super-diffusive movements within the context of Lévy flights has been discussed with respect to particle physics, human movements, microzooplankton, disease spread in global epidemiology and animal foraging behaviour. Super-diffusive movements provide a theoretical explanation for the rapid spread of organisms and disease, but their applicability to empirical data on the historic spread of organisms has rarely been tested. This study focuses on the role of long-distance dispersal in the invasion dynamics of aquatic invasive species across three contrasting areas and spatial scales: open ocean (north-east Atlantic), enclosed sea (Mediterranean) and an island environment (Ireland). Study species included five freshwater plant species, Azolla filiculoides, Elodea canadensis, Lagarosiphon major, Elodea nuttallii and Lemna minuta; and ten species of marine algae, Asparagopsis armata, Antithamnionella elegans, Antithamnionella ternifolia, Codium fragile, Colpomenia peregrina, Caulerpa taxifolia, Dasysiphonia sp., Sargassum muticum, Undaria pinnatifida and Womersleyella setacea. A simulation model is constructed to show the validity of using historical data to reconstruct dispersal kernels. Lévy movement patterns similar to those previously observed in humans and wild animals are evident in the re-constructed dispersal pattern of invasive aquatic species. Such patterns may be widespread among invasive species and could be exacerbated by further development of trade networks, human travel and environmental change. These findings have implications for our ability to predict and manage future invasions, and improve our understanding of the potential for spread of organisms including infectious diseases, plant pests and genetically modified organisms.
Resumo:
Background: Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. Principal Findings: In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate ‘stepping stone’ populations yet to be discovered. Conclusions/Significance: We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.
Resumo:
Understanding how invasive species spread is of particular concern in the current era of globalisation and rapid environmental change. The occurrence of super-diffusive movements within the context of Lévy flights has been discussed with respect to particle physics, human movements, microzooplankton, disease spread in global epidemiology and animal foraging behaviour. Super-diffusive movements provide a theoretical explanation for the rapid spread of organisms and disease, but their applicability to empirical data on the historic spread of organisms has rarely been tested. This study focuses on the role of long-distance dispersal in the invasion dynamics of aquatic invasive species across three contrasting areas and spatial scales: open ocean (north-east Atlantic), enclosed sea (Mediterranean) and an island environment (Ireland). Study species included five freshwater plant species, Azolla filiculoides, Elodea canadensis, Lagarosiphon major, Elodea nuttallii and Lemna minuta; and ten species of marine algae, Asparagopsis armata, Antithamnionella elegans, Antithamnionella ternifolia, Codium fragile, Colpomenia peregrina, Caulerpa taxifolia, Dasysiphonia sp., Sargassum muticum, Undaria pinnatifida and Womersleyella setacea. A simulation model is constructed to show the validity of using historical data to reconstruct dispersal kernels. Lévy movement patterns similar to those previously observed in humans and wild animals are evident in the re-constructed dispersal pattern of invasive aquatic species. Such patterns may be widespread among invasive species and could be exacerbated by further development of trade networks, human travel and environmental change. These findings have implications for our ability to predict and manage future invasions, and improve our understanding of the potential for spread of organisms including infectious diseases, plant pests and genetically modified organisms.
Resumo:
Currently wind power is dominated by onshore wind farms. However, as the demand for power grows driven by security of energy supply issues, dwindling fossil fuel supplies and greenhouse gas emissions reduction targets, offshore wind power will develop rapidly because of the decline of viable onshore sites. The United Kingdom has a target of 21% renewable electricity by 2020 and this is expected to come mostly from wind power. Britain is the most active internationally in terms of offshore wind farm development with almost 48GW in some stage of development. In addition the Scottish Government, the Northern Ireland Executive and the Government of Ireland undertook the 'Irish-Scottish Links on Energy Study' (ISLES), which examined the feasibility of creating an offshore interconnected transmission network and subsea electricity grid based on renewable energy sources off the coast of western Scotland and the Irish Sea. The aim of this paper is to provide an appraisal of offshore wind power development with a focus on the United Kingdom. © 2013 IEEE.
Resumo:
Despite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio-economically, relatively little is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; ca. 21 KYA) indicated large areas of suitable habitat south of the species’ current-day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long-term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important species
Resumo:
Estrogen actions are mainly mediated by specific nuclear estrogen receptors (ERs), for which different genes and a diversity of transcript variants have been identified, mainly in mammals. In this study, we investigated the presence of ER splice variants in the teleost fish gilthead sea bream (Sparus auratus), by comparison with the genomic organization of the related species Takifugu rubripes. Two exon2-deleted ERα transcript variants were isolated from liver cDNA of estradiol-treated fish. The ΔE2 variant lacks ERα exon 2, generating a premature termination codon and a putative C-terminal truncated receptor, while the ΔE2,3* variant contains an in-frame deletion of exon 2 and part of exon 3 and codes for a putative ERα protein variant lacking most of the DNA-binding domain. Both variants were expressed at very low levels in several female and male sea bream tissues, and their expression was highly inducible in liver by estradiol-17β treatment with a strong positive correlation with the typical wild-type (wt) ERα response in this tissue. These findings identify novel estrogen responsive splice variants of fish ERα, and provide the basis for future studies to investigate possible modulation of wt-ER actions by splice variants.