994 resultados para Sea-Ice Marginal-Ice-Zone Waves Modeling
Resumo:
The polynyas of the Laptev Sea are regions of particular interest due to the strong formation of Arctic sea-ice. In order to simulate the polynya dynamics and to quantify ice production, we apply the Finite Element Sea-Ice Ocean Model FESOM. In previous simulations FESOM has been forced with daily atmospheric NCEP (National Centers for Environmental Prediction) 1. For the periods 1 April to 9 May 2008 and 1 January to 8 February 2009 we examine the impact of different forcing data: daily and 6-hourly NCEP reanalyses 1 (1.875° x 1.875°), 6-hourly NCEP reanalyses 2 (1.875° x 1.875°), 6-hourly analyses from the GME (Global Model of the German Weather Service) (0.5° x 0.5°) and high-resolution hourly COSMO (Consortium for Small-Scale Modeling) data (5 km x 5 km). In all FESOM simulations, except for those with 6-hourly and daily NCEP 1 data, the openings and closings of polynyas are simulated in principle agreement with satellite products. Over the fast-ice area the wind fields of all atmospheric data are similar and close to in situ measurements. Over the polynya areas, however, there are strong differences between the forcing data with respect to air temperature and turbulent heat flux. These differences have a strong impact on sea-ice production rates. Depending on the forcing fields polynya ice production ranges from 1.4 km3 to 7.8 km3 during 1 April to 9 May 2011 and from 25.7 km3 to 66.2 km3 during 1 January to 8 February 2009. Therefore, atmospheric forcing data with high spatial and temporal resolution which account for the presence of the polynyas are needed to reduce the uncertainty in quantifying ice production in polynyas.
Resumo:
Sediments in Arctic sea ice are important for erosion and redistribution and consequently a factor for the sediment budget of the Arctic Ocean. The processes leading to the incorporation of sediments into the ice are not understood in detail yet. In the present study, experiments on the incorporation of sediments were therefore conducted in ice tanks of The Hamburg Ship Model Basin (HSVA) in winter 1996/1997, These experiments showed that on average 75 % of the artificial sea-ice sediments were located in the brine-channel system. The sediments were scavenged from the water column by frazil ice. Sediments functioning as a nucleus for the formation of frazil ice were less important for the incorporation. Filtration in grease ice during relatively calm hydrodynamic conditions was probably an effective process to enrich sediments in the ice. Wave fields did not play an important role for the incorporation of sediments into the artificial sea ice. During the expedition TRANSDRIFT III (TDIII, October 1995), different types of natural, newly-formed sea ice (grease ice, nilas and young ice) were sampled in the inner Laptev Sea at the time of freeze-up. The incorporation of sediments took place during calm meteorological conditions then. The characteristics of the clay mineral assemblages of these sedirnents served as references for sea-ice sediments which were sampled from first-year drift ice in the outer Laptev Sea and the adjacent Arctic Ocean during the POLARSTERN expedition ARK-XI/1 (July-September 1995). Based on the clay mineral assemblages, probable incorporation areas for the sedirnents in first-year drift ice could be statistically reconstructed in the inner Laptev Sea (eastern, central, and Western Laptev Sea) as well as in adjacent regions. Comparing the amounts of particulate organic carbon (POC) in sea-ice sediments and in surface sediments from the shelves of potential incorporation areas often reveals higher values in sea-ice sediments (TDIII: 3.6 %DM; ARK-XI/1: 2.3 %DM). This enrichment of POC is probably due to the incorporation process into the sea ice, as could be deducted from maceral analysis and Rock-Eval pyrolysis. Both methods were applied in the present study to particulate organic material (POM) from sea-ice sediments for the first time. It was shown that the POM of the sea-ice sediments from the Laptev Sea and the adjacent Arctic Ocean was dominated by reworked, strongly fragmented, allochthonous (terrigenous) material. This terrigenous component accounted for more than 75 % of all counted macerals. The autochthonous (marine) component was also strongly fragmented, and higher in the sediments from newly-formed sea ice (24 % of all counted macerals) as compared to first-year drift ice (17 % of all counted macerals). Average hydroge indices confirmed this pattern and were in the transition zone between kerogen types II and III (TDIII: 275 mg KW/g POC; ARK-XI/1: 200 mg KW/g POC). The sediment loads quantified in natural sea ice (TDIII: 33.6 mg/l, ARK-XI/1: 49.0 mg/l) indicated that sea-ice sediments are an important factor for the sediment budget in the Laptev Sea. In particular during the incorporation phase in autumn and early winter, about 12 % of the sediment load imported annually by rivers into the Laptev Sea can be incorporated into sea ice and redistributed during calm meteorological conditions. Single entrainment events can incorporate about 35 % of the river input into the sea ice (ca. 9 x 10**6 t) and export it via the Transpolar Drift from the Eurasian shelf to the Fram Strait.
Resumo:
We examined controls on the carbon isotopic composition of sea ice brines and organic matter during cruises to the Ross Sea, Antarctica in November/December 1998 and November/December 2006. Brine samples were analyzed for salinity, nutrients, total dissolved inorganic carbon (sum CO2), and the 13C/12C ratio of Sum CO2 (d13C(sum CO2)). Particulate organic matter from sea ice cores was analyzed for percent particulate organic carbon (POC), percent total particulate nitrogen (TPN), and stable carbon isotopic composition (d13C(POC)). Sum CO2 in sea ice brines ranged from 1368 to 7149 µmol/kg, equivalent to 1483 to 2519 µmol/kg when normalized to 34.5 psu salinity (s sum CO2), the average salinity of Ross Sea surface waters. Sea ice primary producers removed up to 34% of the available sum CO2, an amount much higher than the maximum removal observed in sea ice free water. Carbonate precipitation and CO2 degassing may reduce s sum CO2 by a similar amount (e.g., 30%) in the most hypersaline sea ice environments, although brine volumes are low in very cold ice that supports these brines. Brine d13C(sum CO2) ranged from -2.6 to +8.0 per mil while d13C(POC) ranged from -30.5 to -9.2 per mil. Isotopic enrichment of the sum CO2 pool via net community production accounts for some but not all carbon isotopic enrichment of sea ice POC. Comparisons of s sum CO2, d13C(sum CO2), and d13C(POC) within sea ice suggest that epsilon p (the net photosynthetic fractionation factor) for sea ice algae is ~8 per mil smaller than the epsilon p observed for phytoplankton in open water regions of the Ross Sea. These results have implications for modeling of carbon uptake and transformation in the ice-covered ocean and for reconstruction of past sea ice extent based on stable isotopic composition of organic matter in sediment cores.
Resumo:
During the past decades, remarkable changes in sea-surface temperature (SST) and sea-ice extent have been observed in the marginal seas of the subarctic Pacific. However, little is known about natural climate variability at millennial time scales far beyond instrumental observations. Geological proxy records, such as those derived from marine sediments, offer a unique opportunity to investigate millennial-scale natural climate variability of the Artic and subarctic environments during past glacial-interglacial cycles. Here we provide reconstructions of sea-ice variability inferred from IP25 (Ice Proxy with 25 carbon atoms) sea-ice biomarker and SST fluctuations based on alkenone unsaturation index (UK'37) of the subarctic Pacific realm between 138 and 70 ka. Warmest sea-surface conditions were found during the early Eemian interglacial (128 to 126 ka), exceeding modern SSTs by ~2 °C. The further North Pacific climate evolu- tion is marked by pronounced oscillations in SST and sea-ice extent on millennial time scales, which correspond remarkably well to short-term temperature oscillations known from Green- land and the North Atlantic. These results imply a common forcing, which seems to be closely coupled to dynamics of the Atlantic meridional overturning circulation. However, immediate propagation of such climate fluctuations far beyond the North Atlantic basin suggests a rapid circumpolar coupling mechanism probably acting through the atmosphere, a prerequisite to explain the apparent synchronicity of remote climatic reorganizations in the subarctic Pacific.
Resumo:
The Shelf Seas of the Arctic are known for their large sea-ice production. This paper presents a comprehensive view of the Kara Sea sea-ice cover from high-resolution numerical modeling and space-borne microwave radiometry. As given by the latter the average polynya area in the Kara Sea takes a value of 21.2 × 10**3 km**2 ± 9.1 × 10**3 km**2 for winters (Jan.-Apr.) 1996/97 to 2000/01, being as high as 32.0 × 10**3 km**2 in 1999/2000 and below 12 × 10**3 km**2 in 1998/99. Day-to-day variations of the Kara Sea polynya area can be as high as 50 × 10**3 km**2. For the seasons 1996/97 to 2000/01 the modeled cumulative winter ice-volume flux out of the Kara Sea varied between 100 km**3/a and 350 km**3/a. Modeled high (low) ice export coincides with a high (low) average and cumulative polynya area, and with a low (high) sea-ice compactness in the Kara Sea from remote sensing data, and with a high (low) sea-ice drift speed across its northern boundary derived from independent model data for the winters 1996/97 to 2000/01.
Resumo:
Micropaleontological and biomarker data from two high-accumulation marine sites from the Coastal and Continental Shelf Zone (CCSZ) off East Antarctica (Adélie Land at w140°E and eastern Prydz Bay at w77°E) are used to reconstruct Holocene changes in sea ice and wind stress at the basin-wide scale. These data demonstrate congruent increase in sea-ice concentration/persistence and wind stress-related sea-surface turbulence in the two regions since 7 cal ka BP, with a particularly strong signal since 4.5 - 3.5 cal ka BP. Comparison of these high latitude records with sea ice and turbulence records from the southern mid-latitudes highlights distinctive climatic evolutions according to the different latitudinal bands. Sea-ice persistence and turbulence increase in East Antarctica CCSZ are opposite to sea-surface warming and sea-ice retreat recorded after 4.5 - 3.5 cal ka BP in the East Atlantic and Indian sector between 55 and 45°S. At the same period, paleodata suggest SST cooling in all major coastal upwelling systems of the southern hemisphere, caused by the northward transport of subpolar surface waters as a response to southern Westerlies reinforcement. We therefore propose, as suggested for the northern hemisphere, that Holocene changes in the latitudinal insolation gradient, primarily forced by obliquity and precession and amplified by sea-ice and glacial-ice expansions in the Antarctic realm, are responsible for the observed contrasted latitudinal patterns of southern latitudes.