990 resultados para Sea urchins.
Resumo:
Endomesoderm is the common progenitor of endoderm and mesoderm early in the development of many animals. In the sea urchin embryo, the Delta/Notch pathway is necessary for the diversification of this tissue, as are two early transcription factors, Gcm and FoxA, which are expressed in mesoderm and endoderm, respectively. Here, we provide a detailed lineage analysis of the cleavages leading to endomesoderm segregation, and examine the expression patterns and the regulatory relationships of three known regulators of this cell fate dichotomy in the context of the lineages. We observed that endomesoderm segregation first occurs at hatched blastula stage. Prior to this stage, Gcm and FoxA are co-expressed in the same cells, whereas at hatching these genes are detected in two distinct cell populations. Gcm remains expressed in the most vegetal endomesoderm descendant cells, while FoxA is downregulated in those cells and activated in the above neighboring cells. Initially, Delta is expressed exclusively in the micromeres, where it is necessary for the most vegetal endomesoderm cell descendants to express Gcm and become mesoderm. Our experiments show a requirement for a continuous Delta input for more than two cleavages (or about 2.5 hours) before Gcm expression continues in those cells independently of further Delta input. Thus, this study provides new insights into the timing mechanisms and the molecular dynamics of endomesoderm segregation during sea urchin embryogenesis and into the mode of action of the Delta/Notch pathway in mediating mesoderm fate.
Resumo:
My dissertation work integrates comparative transcriptomics and functional analyses to investigate gene expression changes underlying two significant aspects of sea urchin evolution and development: the dramatic developmental changes associated with an ecologically significant shift in life history strategy and the development of the unusual radial body plan of adult sea urchins.
In Chapter 2, I investigate evolutionary changes in gene expression underlying the switch from feeding (planktotrophic) to nonfeeding (lecithotrophic) development in sea urchins. In order to identify these changes, I used Illumina RNA-seq to measure expression dynamics across 7 developmental stages in three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and an outgroup planktotroph Lytechinus variegatus. My analyses draw on a well-characterized developmental gene regulatory network (GRN) in sea urchins to understand how the ancestral planktotrophic developmental program was altered during the evolution of lecithotrophic development. My results suggest that changes in gene expression profiles occurred more frequently across the transcriptome during the evolution of lecithotrophy than during the persistence of planktotrophy. These changes were even more pronounced within the GRN than across the transcriptome as a whole, and occurred in each network territory (skeletogenic, endomesoderm and ectoderm). I found evidence for both conservation and divergence of regulatory interactions in the network, as well as significant changes in the expression of genes with known roles in larval skeletogenesis, which is dramatically altered in lecithotrophs. I further explored network dynamics between species using coexpression analyses, which allowed me to identify novel players likely involved in sea urchin neurogenesis and endoderm patterning.
In Chapter 3, I investigate developmental changes in gene expression underlying radial body plan development and metamorphosis in H. erythrogramma. Using Illumina RNA-seq, I measured gene expression profiles across larval, metamorphic, and post-metamorphic life cycle phases. My results present a high-resolution view of gene expression dynamics during the complex transition from pre- to post-metamorphic development and suggest that distinct sets of regulatory and effector proteins are used during different life history phases.
Collectively, my investigations provide an important foundation for future, empirical studies to investigate the functional role of gene expression change in the evolution of developmental differences between species and also for the generation of the unusual radial body plan of sea urchins.
Resumo:
Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability.
Resumo:
Broadcast spawning invertebrates that live in shallow, high-energy coastal habitats are subjected to oscillatory water motion that creates unsteady flow fields above the surface of animals. The frequency of the oscillatory fluctuations is driven by the wave period, which will influence the stability of local flow structures and may affect fertilization processes. Using an oscillatory water tunnel, we quantified the percentage of eggs fertilized on or near spawning green sea urchins, Strongylocentrotus droebachiensis. Eggs were sampled in the water column, wake eddy, substratum and aboral surface under a range of different periods (T = 4.5 – 12.7 s) and velocities of oscillatory flow. The root-mean-square wave velocity (rms(uw)) was a good predictor of fertilization in oscillatory flow, although the root-mean-square of total velocity (rms(u)), which incorporates all the components of flow (current, wave and turbulence), also provided significant predictions. The percentage of eggs fertilized varied between 50 – 85% at low flows (rms(uw) < 0.02 m s-1), depending on the location sampled, but declined to below 10% for most locations at higher rms(uw). The water column was an important location for fertilization with a relative contribution greater than that of the aboral surface, especially at medium and high rms(uw) categories. We conclude that gametes can be successfully fertilized on or near the parent under a range of oscillatory flow conditions.
Resumo:
Intraspecific variation in gamete compatibility among male/female pairs causes variation in the concentration of sperm required to achieve equivalent fertilization levels. Gamete compatibility is therefore potentially an important factor controlling mating success. Many broadcast-spawning marine invertebrates, however, also live in a dynamic environment where hydrodynamic conditions can affect the concentration of sperm reaching eggs during spawning. Thus flow conditions may moderate the effects of gamete compatibility on fertilization. Using the green sea urchin Strongylocentrotus droebachiensis as a model system, we assessed the relative effects of gamete compatibility (the concentration of sperm required to fertilize 50% of the eggs in specific male/female pairs; F50) and the root-mean-square of total velocity (urms; 0.01-0.11 m s(-1)) on fertilization in four locations near a spawning female (water column, wake eddy, substratum, and aboral surface) in both unidirectional and oscillatory flows. Percent fertilization decreased significantly with increasing urms at all locations and both flow regimes. However, although gamete compatibility varied by almost 1.5 orders of magnitude, it was not a significant predictor of fertilization for most combinations of position and flow. The notable exception was a significant effect of gamete compatibility on fertilization on the aboral surface under unidirectional flow. Our results suggest that selection on variation in gamete compatibility may be strongest in eggs fertilized on the aboral surface of sea urchins and that hydrodynamic conditions may add environmental noise to selection outcomes.
Resumo:
Echinometra lucunter, (Pinda) is a sea urchin encountered in the Brazilian coast and exposed to high and low temperatures related to low and high tides. Despite their great distribution and importance, few studies have been done on the biological function of their coelomocytes. Thus, Echinometra lucunter perivisceral coelomocytes were characterized under optical and transmission electron microscopy. Phagocytic amoebocytes in the perivisceral coelom were labelled by injecting ferritin, and ferritin labelled phagocytic amoebocytes were found in the peristomial connective tissue after injecting India ink into the tissue, indicating the amoebocytes ability to respond to an inflammatory stimulus. Results showed that the phagocytic amoebocytes were the main inflammatory cells found in the innate immune response of E lucunter. While other works have recorded these phenomena in sea urchins found in moderate and constant temperature, this study reports on these same phenomena in a tropical sea urchin under great variation of temperature, thus providing new data to inflammatory studies in invertebrate pathology. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Os acidentes por animais aquáticos traumatizantes e venenosos podem provocar morbidez importante em humanos. Equinodermos marinhos incluem mais de 6000 espécies de estrelas-do-mar, ouriços-do-mar, bolachas-de-praia e pepinos-do-mar. Vários equinodermos têm sido responsabilizados por acidentes em humanos. Granulomas por ouriço-do-mar são lesões de caráter granulomatoso, crônicas, causada por acidentes com espículas de ouriço-do-mar. Os autores relatam um caso típico de granulomas por ouriço-do-mar ocorrido em um pescador e enfatizam as implicações terapêuticas aplicadas.
Resumo:
Global warming is a reality and its effects have been widely studied. However, the consequences for marine invertebrates remain poorly understood. Thus, the present study proposed to evaluate the effect of elevated temperature on the innate immune system of Antarctic sea urchin Sterechinus neumayeri. Sea urchins were collected nearby Brazilian Antarctic Station "Comandante Ferraz" and exposed to 0 (control), 2 and 4A degrees C for periods of 48 h, 2, 7 and 14 days. After the experimental periods, coelomic fluid was collected in order to perform the following analyses: coelomocytes differential counting, phagocytic response, adhesion and spreading coelomocytes assay, intranuclear iron crystalloid and ultra structural analysis of coelomocytes. The red sphere cell was considered a biomarker for heat stress, as they increased in acute stress. Besides that, a significant increase in phagocytic indexes was observed at 2A degrees C coinciding with a significant increase of intranuclear iron crystalloid at the same temperature and same time period. Furthermore, significant alterations in cell adhesion and spreading were observed in elevated temperatures. The ultra structural analysis of coelomocytes showed no significant difference across treatments. This was the first time that innate immune response alterations were observed in response to elevated temperature in a Polar echinoid.
Resumo:
Ocean temperatures are rising throughout the world, making it necessary to evaluate the impact of these temperature changes on sea urchins, which are well-known bioindicators. This study evaluated the effect of an increase in temperature on the immune response of the subtidal Lytechinus variegatus and the intertidal Echinometra lucunter sea urchins. Both species were exposed to 20 (control), 25 and 30 °C temperatures for 24 h, 2, 7 and 14 days. Counting of coelomocytes and assays on the phagocytic response, adhesion and spreading of coelomocytes were performed. Red and colorless sphere cells were considered biomarkers for heat stress. Moreover, a significant decrease in the phagocytic indices and a decrease in both cell adhesion and cell spreading were observed at 25 and 30 °C for L. variegatus. For E. lucunter, the only alteration observed was for the cell proportions. This report shows how different species of sea urchins respond immunologically to rising temperatures
Resumo:
[EN]A range of factors may affect the composition and abundance of macroalgae on subtidal rocky reefs. We experimentally determined the interactive effect of the occurrence of the long-spine sea urchin, Diadema antillarum, depth and sedimentation levels on macroalgal assemblage structure on eastern Atlantic rocky reefs. Specifically, we manipulated sea urchin densities (removal of all individuals vs. untouched controls at natural densities) on rocky reefs devoid of erect vegetation, and predicted (1) that removal of sea urchins would differently affect macroalgal assemblage structure between deep (16-18 m) and shallow (8-9 m) reef strata, and that (2) the effect of sea urchin removal on macroalgae would be altered under different scenarios of sedimentation (ambient vs. enhanced). Experimental circular plots (2 m in diameter) were set up at 3 locations at Gran Canaria (Canarian Archipelago), and were maintained and monitored every 4 wk for 1 y. At the end of the experimental period, the structure of the algal assemblages differed between urchin treatments and depth strata, with a larger cover of turf and bushlike algae where urchins were removed and at the shallow reef stratum. More important, differences in algal assemblage structure between urchin treatments were irrespective of sedimentation levels, but shifted from the shallow to the deep stratum. This interactive effect was, in turn, observed for bushlike algae, as a result of a larger magnitude of response (i.e., larger cover) in the shallow stratum relative to the deep stratum, but was not detected for either turf or crustose coralline algae. These results highlight the importance of sorne physical conditions (here, differences in depth) to interact with biotic processes (here, urchin abundance) to create patterns in the organization of subtidal and benthic assemblages
Resumo:
Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability
Resumo:
Due to their low metabolism and apparent poor ion regulation ability, sea urchins could be particularly sensitive to ocean acidification resulting from increased dissolution of atmospheric carbon dioxide. Therefore, we evaluated the acid-base regulation ability of the coral reef sea urchin Echinometra mathaei and the impact of decreased pH on its growth and respiration activity. The study was conducted in two identical artificial reef mesocosms during seven weeks. Experimental tanks were maintained respectively at mean pHT 7.7 and 8.05 (with field-like night and day variations). The major physico-chemical parameters were identical, only pCO2 and pHT differed. Results indicate that E. mathaei can regulate the pH of its coelomic fluid in the considered range of pH, allowing a sustainable growth and ensuring an unaffected respiratory metabolism, at least at short term.
Resumo:
The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.
Resumo:
Ocean acidification results from an increase in the concentrations of atmospheric carbon dioxide (CO2) impacts on marine calcifying species, which is predicted to become more pronounced in the future. By the end of this century, atmospheric pCO2 levels will have doubled relative to the pre-industrial levels of 280 ppm. However, the effects of pre-industrial pCO2 levels on marine organisms remain largely unknown. In this study, we investigated the effects of pre-industrial pCO2 conditions on the size of the pluteus larvae of sea urchins, which are known to be vulnerable to ocean acidification. The larval size of Hemicentrotus pulcherrimus significantly increased when reared at pre-industrial pCO2 level relative to the present one, and the size of Anthocidaris crassispina larvae decreased as the pCO2 levels increased from the pre-industrial level to the near future ones after 3 days' exposure. In this study, it is suggested that echinoid larvae responded to pre-industrial pCO2 levels. Ocean acidification may be affecting some sensitive marine calcifiers even at the present pCO2 level.
Resumo:
Ocean acidification caused by an increase in pCO2 is expected to drastically affect marine ecosystem composition, yet there is much uncertainty about the mechanisms through which ecosystems may be affected. Here we studied sea urchins that are common and important grazers in the Mediterranean (Paracentrotus lividus and Arbacia lixula). Our study included a natural CO2 seep plus reference sites in the Aegean Sea off Greece. The distribution of A. lixula was unaffected by the low pH environment, whereas densities of P. lividus were much reduced. There was skeletal degradation in both species living in acidified waters compared to reference sites and remarkable increases in skeletal manganese levels (P. lividus had a 541% increase, A. lixula a 243% increase), presumably due to changes in mineral crystalline structure. Levels of strontium and zinc were also altered. It is not yet known whether such dramatic changes in skeletal chemistry will affect coastal systems but our study reveals a mechanism that may alter inter-species interactions.