987 resultados para Sea Level Rise


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea-level rise (SLR) from global warming may have severe consequences for coastal cities, particularly when combined with predicted increases in the strength of tidal surges. Predicting the regional impact of SLR flooding is strongly dependent on the modelling approach and accuracy of topographic data. Here, the areas under risk of sea water flooding for London boroughs were quantified based on the projected SLR scenarios reported in Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5) and UK climatic projections 2009 (UKCP09) using a tidally-adjusted bathtub modelling approach. Medium- to very high-resolution digital elevation models (DEMs) are used to evaluate inundation extents as well as uncertainties. Depending on the SLR scenario and DEMs used, it is estimated that 3%–8% of the area of Greater London could be inundated by 2100. The boroughs with the largest areas at risk of flooding are Newham, Southwark, and Greenwich. The differences in inundation areas estimated from a digital terrain model and a digital surface model are much greater than the root mean square error differences observed between the two data types, which may be attributed to processing levels. Flood models from SRTM data underestimate the inundation extent, so their results may not be reliable for constructing flood risk maps. This analysis provides a broad-scale estimate of the potential consequences of SLR and uncertainties in the DEM-based bathtub type flood inundation modelling for London boroughs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2006/1016/thumbnail.jpg

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Management strategies to protect endangered species primarily focus on safeguarding habitats currently perceived as important (due to high-density use, rarity or contribution to the biological cycle), rather than sites of future ecological importance. This discrepancy is particularly relevant for species inhabiting beaches and coastal areas that may be lost due to sea-level rise over the next 100 years through climate change. Here, we modelled four sea-level rise (SLR) scenarios (0.2, 0.6, 0.9 and 1.3 m) to determine the future vulnerability and viability of nesting habitat (six distinct nesting beaches totalling about 6 km in length) at a key loggerhead sea turtle (Caretta caretta) rookery (Zakynthos, Greece) in the Mediterranean. For each of the six nesting beaches, we identified (1) the area of beach currently used by turtles, (2) the area of the beach anticipated to become inundated under each SLR, (3) the area of beach anticipated to become unsuitable for nesting under each SLR, (4) the potential for habitat loss under the examined SLR, and (5) the extent to which the beaches may shift in relation to natural (i.e. cliffs) and artificial (i.e. beach front development) physical barriers. Even under the most conservative 0.2 m SLR scenario, about 38% (range: 31–48%) total nesting beach area would be lost, while an average 13% (range: 7–17%) current nesting beach area would be lost. About 4 km length of nesting habitat (representing 85% of nesting activity) would be lost under the 0.9 m scenario, because cliffs prevent landward beach migration. In comparison, while the other 2 km of beach (representing 15% nests) is also at high risk, it has the capacity for landward migration, because of an adjoining sand-dune system. Therefore, managers should strengthen actions on this latter area, as a climatically critical safeguard for future sea turtle nesting activity, in parallel to regularly assessing and revising measures on the current high-use nesting habitats of this important Mediterranean loggerhead population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maine's 3,500 miles of coastline is the longest coastline in the continental US. The goal of our study was to use GIS to estimate the impact future global sea level rise could potentially have on our state. We show the area of coastline and some of the economic and social impacts that would result from a rise of one meter and six meters. We used roads to estimate the impact on infrastructure and public building, including schools, libraries, hospitals, police and fire stations, as a measure of social impact. A sea level rise of six meters would result in a loss of over 650 km¬2 from coastal communities and cost the state of Maine over 3 million in repaving costs. Through our study, we hope coastal communities will be able to prepare for and react to the predicted changes in global sea level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern stratigraphy of clastic continental margins is the result of the interaction between several geological processes acting on different time scales, among which sea level oscillations, sediment supply fluctuations and local tectonics are the main mechanisms. During the past three years my PhD was focused on understanding the impact of each of these process in the deposition of the central and northern Adriatic sedimentary successions, with the aim of reconstructing and quantifying the Late Quaternary eustatic fluctuations. In the last few decades, several Authors tried to quantify past eustatic fluctuations through the analysis of direct sea level indicators, among which drowned barrier-island deposits or coral reefs, or indirect methods, such as Oxygen isotope ratios (δ18O) or modeling simulations. Sea level curves, obtained from direct sea level indicators, record a composite signal, formed by the contribution of the global eustatic change and regional factors, as tectonic processes or glacial-isostatic rebound effects: the eustatic signal has to be obtained by removing the contribution of these other mechanisms. To obtain the most realistic sea level reconstructions it is important to quantify the tectonic regime of the central Adriatic margin. This result has been achieved integrating a numerical approach with the analysis of high-resolution seismic profiles. In detail, the subsidence trend obtained from the geohistory analysis and the backstripping of the borehole PRAD1.2 (the borehole PRAD1.2 is a 71 m continuous borehole drilled in -185 m of water depth, south of the Mid Adriatic Deep - MAD - during the European Project PROMESS 1, Profile Across Mediterranean Sedimentary Systems, Part 1), has been confirmed by the analysis of lowstand paleoshorelines and by benthic foraminifera associations investigated through the borehole. This work showed an evolution from inner-shelf environment, during Marine Isotopic Stage (MIS) 10, to upper-slope conditions, during MIS 2. Once the tectonic regime of the central Adriatic margin has been constrained, it is possible to investigate the impact of sea level and sediment supply fluctuations on the deposition of the Late Pleistocene-Holocene transgressive deposits. The Adriatic transgressive record (TST - Transgressive Systems Tract) is formed by three correlative sedimentary bodies, deposited in less then 14 kyr since the Last Glacial Maximum (LGM); in particular: along the central Adriatic shelf and in the adjacent slope basin the TST is formed by marine units, while along the northern Adriatic shelf the TST is represented by costal deposits in a backstepping configuration. The central Adriatic margin, characterized by a thick transgressive sedimentary succession, is the ideal site to investigate the impact of late Pleistocene climatic and eustatic fluctuations, among which Meltwater Pulses 1A and 1B and the Younger Dryas cold event. The central Adriatic TST is formed by a tripartite deposit bounded by two regional unconformities. In particular, the middle TST unit includes two prograding wedges, deposited in the interval between the two Meltwater Pulse events, as highlighted by several 14C age estimates, and likely recorded the Younger Dryas cold interval. Modeling simulations, obtained with the two coupled models HydroTrend 3.0 and 2D-Sedflux 1.0C (developed by the Community Surface Dynamics Modeling System - CSDMS), integrated by the analysis of high resolution seismic profiles and core samples, indicate that: 1 - the prograding middle TST unit, deposited during the Younger Dryas, was formed as a consequence of an increase in sediment flux, likely connected to a decline in vegetation cover in the catchment area due to the establishment of sub glacial arid conditions; 2 - the two-stage prograding geometry was the consequence of a sea level still-stand (or possibly a fall) during the Younger Dryas event. The northern Adriatic margin, characterized by a broad and gentle shelf (350 km wide with a low angle plunge of 0.02° to the SE), is the ideal site to quantify the timing of each steps of the post LGM sea level rise. The modern shelf is characterized by sandy deposits of barrier-island systems in a backstepping configuration, showing younger ages at progressively shallower depths, which recorded the step-wise nature of the last sea level rise. The age-depth model, obtained by dated samples of basal peat layers, is in good agreement with previous published sea level curves, and highlights the post-glacial eustatic trend. The interval corresponding to the Younger Dyas cold reversal, instead, is more complex: two coeval coastal deposits characterize the northern Adriatic shelf at very different water depths. Several explanations and different models can be attempted to explain this conundrum, but the problem remains still unsolved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis analyses the effects of the enrichment of the soil with fertilizer and sea level rise (SLR) on salt marsh vegetation. We simulated different conditions of the salt marshes under current and projected sea level rise. These habitats are colonised by various types of plants, we focused on species belonging to the genus Spartina. This plant seems to be particularly sensitive to eutrophication due to human activities, as experiments have documented a loss of habitat associated with altered nutrient conditions. We manipulated experimentally the types of sediment, the concentration of nutrients and sea level rise. We wanted to test whether eutrophication can affect the aboveground/belowground growth of the vegetation, and indirectly the erosion of the sediment, with potentially interacting effects with soil type and SLR in affecting the loss of the habitats and species. The study lasted from July to October. The data were analysed using Permanova. The results showed that the plants were placed in growth spiked sediment different from those raised in the untreated sediment. Furthermore, the sediment underwent a level of erosion differently depending on the growth of plants and the condition they were in the pots, current or future sea levers. These results suggest that the total salt marsh habitat is very sensitive to changes caused by human activities, and that excessive eutrophication, combined with SLR will likely facilitate further loss of salt marsh vegetation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are some places along Connecticut's coast where marshes have a place to migrate as sea level rises.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a changing climate. Most sea level rise (SLR) vulnerability assessments are undertaken using the easily implemented bathtub approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation model (DEM). However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging. This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation, a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic approach provides visually intuitive maps that convey uncertainties inherent to spatial data and analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo final de las investigaciones recogidas en esta tesis doctoral es la estimación del volumen de hielo total de los ms de 1600 glaciares de Svalbard, en el Ártico, y, con ello, su contribución potencial a la subida del nivel medio del mar en un escenario de calentamiento global. Los cálculos más exactos del volumen de un glaciar se efectúan a partir de medidas del espesor de hielo obtenidas con georradar. Sin embargo, estas medidas no son viables para conjuntos grandes de glaciares, debido al coste, dificultades logísticas y tiempo requerido por ellas, especialmente en las regiones polares o de montaña. Frente a ello, la determinación de áreas de glaciares a partir de imágenes de satélite sí es viable a escalas global y regional, por lo que las relaciones de escala volumen-área constituyen el mecanismo más adecuado para las estimaciones de volúmenes globales y regionales, como las realizadas para Svalbard en esta tesis. Como parte del trabajo de tesis, hemos elaborado un inventario de los glaciares de Svalbard en los que se han efectuado radioecosondeos, y hemos realizado los cálculos del volumen de hielo de más de 80 cuencas glaciares de Svalbard a partir de datos de georradar. Estos volúmenes han sido utilizados para calibrar las relaciones volumen-área desarrolladas en la tesis. Los datos de georradar han sido obtenidos en diversas campañas llevadas a cabo por grupos de investigación internacionales, gran parte de ellas lideradas por el Grupo de Simulación Numérica en Ciencias e Ingeniería de la Universidad Politécnica de Madrid, del que forman parte la doctoranda y los directores de tesis. Además, se ha desarrollado una metodología para la estimación del error en el cálculo de volumen, que aporta una novedosa técnica de cálculo del error de interpolación para conjuntos de datos del tipo de los obtenidos con perfiles de georradar, que presentan distribuciones espaciales con unos patrones muy característicos pero con una densidad de datos muy irregular. Hemos obtenido en este trabajo de tesis relaciones de escala específicas para los glaciares de Svalbard, explorando la sensibilidad de los parámetros a diferentes morfologías glaciares, e incorporando nuevas variables. En particular, hemos efectuado experimentos orientados a verificar si las relaciones de escala obtenidas caracterizando los glaciares individuales por su tamaño, pendiente o forma implican diferencias significativas en el volumen total estimado para los glaciares de Svalbard, y si esta partición implica algún patrón significativo en los parámetros de las relaciones de escala. Nuestros resultados indican que, para un valor constante del factor multiplicativo de la relacin de escala, el exponente que afecta al área en la relación volumen-área decrece según aumentan la pendiente y el factor de forma, mientras que las clasificaciones basadas en tamaño no muestran un patrón significativo. Esto significa que los glaciares con mayores pendientes y de tipo circo son menos sensibles a los cambios de área. Además, los volúmenes de la población total de los glaciares de Svalbard calculados con fraccionamiento en grupos por tamaño y pendiente son un 1-4% menores que los obtenidas usando la totalidad de glaciares sin fraccionamiento en grupos, mientras que los volúmenes calculados fraccionando por forma son un 3-5% mayores. También realizamos experimentos multivariable para obtener estimaciones óptimas del volumen total mediante una combinación de distintos predictores. Nuestros resultados muestran que un modelo potencial simple volumen-área explica el 98.6% de la varianza. Sólo el predictor longitud del glaciar proporciona significación estadística cuando se usa además del área del glaciar, aunque el coeficiente de determinación disminuye en comparación con el modelo más simple V-A. El predictor intervalo de altitud no proporciona información adicional cuando se usa además del área del glaciar. Nuestras estimaciones del volumen de la totalidad de glaciares de Svalbard usando las diferentes relaciones de escala obtenidas en esta tesis oscilan entre 6890 y 8106 km3, con errores relativos del orden de 6.6-8.1%. El valor medio de nuestras estimaciones, que puede ser considerado como nuestra mejor estimación del volumen, es de 7.504 km3. En términos de equivalente en nivel del mar (SLE), nuestras estimaciones corresponden a una subida potencial del nivel del mar de 17-20 mm SLE, promediando 19_2 mm SLE, donde el error corresponde al error en volumen antes indicado. En comparación, las estimaciones usando las relaciones V-A de otros autores son de 13-26 mm SLE, promediando 20 _ 2 mm SLE, donde el error representa la desviación estándar de las distintas estimaciones. ABSTRACT The final aim of the research involved in this doctoral thesis is the estimation of the total ice volume of the more than 1600 glaciers of Svalbard, in the Arctic region, and thus their potential contribution to sea-level rise under a global warming scenario. The most accurate calculations of glacier volumes are those based on ice-thicknesses measured by groundpenetrating radar (GPR). However, such measurements are not viable for very large sets of glaciers, due to their cost, logistic difficulties and time requirements, especially in polar or mountain regions. On the contrary, the calculation of glacier areas from satellite images is perfectly viable at global and regional scales, so the volume-area scaling relationships are the most useful tool to determine glacier volumes at global and regional scales, as done for Svalbard in this PhD thesis. As part of the PhD work, we have compiled an inventory of the radio-echo sounded glaciers in Svalbard, and we have performed the volume calculations for more than 80 glacier basins in Svalbard from GPR data. These volumes have been used to calibrate the volume-area relationships derived in this dissertation. Such GPR data have been obtained during fieldwork campaigns carried out by international teams, often lead by the Group of Numerical Simulation in Science and Engineering of the Technical University of Madrid, to which the PhD candidate and her supervisors belong. Furthermore, we have developed a methodology to estimate the error in the volume calculation, which includes a novel technique to calculate the interpolation error for data sets of the type produced by GPR profiling, which show very characteristic data distribution patterns but with very irregular data density. We have derived in this dissertation scaling relationships specific for Svalbard glaciers, exploring the sensitivity of the scaling parameters to different glacier morphologies and adding new variables. In particular, we did experiments aimed to verify whether scaling relationships obtained through characterization of individual glacier shape, slope and size imply significant differences in the estimated volume of the total population of Svalbard glaciers, and whether this partitioning implies any noticeable pattern in the scaling relationship parameters. Our results indicate that, for a fixed value of the factor in the scaling relationship, the exponent of the area in the volume-area relationship decreases as slope and shape increase, whereas size-based classifications do not reveal any clear trend. This means that steep slopes and cirque-type glaciers are less sensitive to changes in glacier area. Moreover, the volumes of the total population of Svalbard glaciers calculated according to partitioning in subgroups by size and slope are smaller (by 1-4%) than that obtained considering all glaciers without partitioning into subgroups, whereas the volumes calculated according to partitioning in subgroups by shape are 3-5% larger. We also did multivariate experiments attempting to optimally predict the volume of Svalbard glaciers from a combination of different predictors. Our results show that a simple power-type V-A model explains 98.6% of the variance. Only the predictor glacier length provides statistical significance when used in addition to the predictor glacier area, though the coefficient of determination decreases as compared with the simpler V-A model. The predictor elevation range did not provide any additional information when used in addition to glacier area. Our estimates of the volume of the entire population of Svalbard glaciers using the different scaling relationships that we have derived along this thesis range within 6890-8106 km3, with estimated relative errors in total volume of the order of 6.6-8.1% The average value of all of our estimates, which could be used as a best estimate for the volume, is 7,504 km3. In terms of sea-level equivalent (SLE), our volume estimates correspond to a potential contribution to sea-level rise within 17-20 mm SLE, averaging 19 _ 2 mm SLE, where the quoted error corresponds to our estimated relative error in volume. For comparison, the estimates using the V-A scaling relations found in the literature range within 13-26 mm SLE, averaging 20 _ 2 mm SLE, where the quoted error represents the standard deviation of the different estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a set of new volume scaling relationships specific to Svalbard glaciers, derived from a sample of 60 volume–area pairs. Glacier volumes are computed from ground-penetrating radar (GPR)-retrieved ice thickness measurements, which have been compiled from different sources for this study. The most precise scaling models, in terms of lowest cross-validation errors, are obtained using a multivariate approach where, in addition to glacier area, glacier length and elevation range are also used as predictors. Using this multivariate scaling approach, together with the Randolph Glacier Inventory V3.2 for Svalbard and Jan Mayen, we obtain a regional volume estimate of 6700 ± 835 km3, or 17 ± 2 mm of sea-level equivalent (SLE). This result lies in the mid- to low range of recently published estimates, which show values as varied as 13 and 24 mm SLE. We assess the sensitivity of the scaling exponents to glacier characteristics such as size, aspect ratio and average slope, and find that the volume of steep-slope and cirque-type glaciers is not very sensitive to changes in glacier area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Island County is located in the Puget Sound of Washington State and includes several islands, the largest of which is Whidbey Island. Central Whidbey Island was chosen as the project site, as residents use groundwater for their water supply and seawater intrusion near the coast is known to contaminate this resource. In 1989, Island County adopted a Saltwater Intrusion Policy and used chloride concentrations in existing wells in order to define and map “risk zones.” In 2005, this method of defining vulnerability was updated with the use of water level elevations in conjunction with chloride concentrations. The result of this work was a revised map of seawater intrusion vulnerability that is currently in use by Island County. This groundwater management strategy is defined as trigger-level management and is largely a reactive tool. In order to evaluate trends in the hydrogeologic processes at the site, including seawater intrusion under sea level rise scenarios, this report presents a workflow where groundwater flow and discharge to the sea are quantified using a revised conceptual site model. The revised conceptual site model used several simplifying assumptions that allow for first-order quantitative predictions of seawater intrusion using analytical methods. Data from water well reports included lithologic and well construction information, static water levels, and aquifer tests for specific capacity. Results from specific capacity tests define the relationship between discharge and drawdown and were input for a modified Theis equation to solve for transmissivity (Arihood, 2009). Components of the conceptual site model were created in ArcGIS and included interpolation of water level elevation, creation of groundwater basins, and the calculation of net recharge and groundwater discharge for each basin. The revised conceptual site model was then used to hypothesize regarding hydrogeologic processes based on observed trends in groundwater flow. Hypotheses used to explain a reduction in aquifer thickness and hydraulic gradient were: (1) A large increase in transmissivity occurring near the coast. (2) The reduced aquifer thickness and hydraulic gradient were the result of seawater intrusion. (3) Data used to create the conceptual site model were insufficient to resolve trends in groundwater flow. For Hypothesis 2, analytical solutions for groundwater flow under Dupuit assumptions were applied in order to evaluate seawater intrusion under projected sea level rise scenarios. Results indicated that a rise in sea level has little impact on the position of a saltwater wedge; however, a reduction in recharge has significant consequences. Future work should evaluate groundwater flow using an expanded monitoring well network and aquifer recharge should be promoted by reducing surface water runoff.