984 resultados para Schwinger Dyson equations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the pure gauge Schwinger-Dyson equation for the gluon propagator in the Landau gauge within an approximation proposed by Mandelstam many years ago. We show that a dynamical gluon mass arises as a solution. This solution is obtained numerically in the full range of momenta that we have considered without the introduction of any ansatz or asymptotic expression in the infrared region. The vertex function that we use follows a prescription formulated by Cornwall to determine the existence of a dynamical gluon mass in the light cone gauge. The renormalization procedure differs from the one proposed by Mandelstam and allows for the possibility of a dynamical gluon mass. Some of the properties of this solution, such as its dependence on A(QCD) and its perturbative scaling behavior are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vertex corrections are taken into account in the Schwinger-Dyson equation for the nucleon propagator in a relativistic field theory of fermions and mesons. The usual Hartree-Fock approximation for the nucleon propagator is known to produce the appearance of complex (ghost) poles which violate basic theorems of quantum field theory. In a theory with vector mesons there are vertex corrections that produce a strongly damped vertex function in the ultraviolet. One set of such corrections is known as the Sudakov form factor in quantum electrodynamics. When the Sudakov form factor generated by massive neutral vector mesons is included in the Hartree-Fock approximation to the Schwinger-Dyson equation for the nucleon propagator, the ghost poles disappear and consistency with basic requirements of quantum field theory is recovered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We construct the Pomeron as an exchange of two nonperturbative gluons, where the nonperturbative gluon propagator is described by an approximate solution of the Schwinger-Dyson equation which contains a dynamically generated gluon mass. We compute the total and elastic differential (dsigma/dt) cross sections for pp scattering, obtaining agreement with the experimental data for a gluon mass m = 370 MeV for LAMBDA(QCD) = 300 MeV. In particular, the Pomeron effectively behaves like a photon-exchange diagram with a coupling determined by the glucon mass.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complex mass poles, or ghost poles, are present in the Hartree-Fock solution of the Schwinger-Dyson equation for the nucleon propagator in renormalizable models with Yukawa-type meson-nucleon couplings, as shown many years ago by Brown, Puff and Wilets (BPW), These ghosts violate basic theorems of quantum field theory and their origin is related to the ultraviolet behavior of the model interactions, Recently, Krein et.al, proved that the ghosts disappear when vertex corrections are included in a self-consistent way, softening the interaction sufficiently in the ultraviolet region. In previous studies of pi N scattering using ''dressed'' nucleon propagator and bare vertices, did by Nutt and Wilets in the 70's (NW), it was found that if these poles are explicitly included, the value of the isospin-even amplitude A((+)) is satisfied within 20% at threshold. The absence of a theoretical explanation for the ghosts and the lack of chiral symmetry in these previous studies led us to re-investigate the subject using the approach of the linear sigma-model and study the interplay of low-energy theorems for pi N scattering and ghost poles. For bare interaction vertices we find that ghosts are present in this model as well and that the A((+)) value is badly described, As a first approach to remove these complex poles, we dress the vertices with phenomenological form factors and a reasonable agreement with experiment is achieved, In order to fix the two cutoff parameters, we use the A((+)) value for the chiral limit (m(pi) --> 0) and the experimental value of the isoscalar scattering length, Finally, we test our model by calculating the phase shifts for the S waves and we find a good agreement at threshold. (C) 1997 Elsevier B.V. B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using a form of the effective potential for composite operators with a variational approach we show that it is possible to get different directions of the chiral phase transition in QCD. Which one occurs depends on the way the Schwinger-Dyson equation for the fermion self-energy is used in the 2-loop term of the effective potential. We must choose the 2-loop term which agrees with phenomenology in each form of the effective potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We compute the critical coupling constant for the dynamical chiral-symmetry breaking in a model of quantum chromodynamics, solving numerically the quark self-energy using infrared finite gluon propagators found as solutions of the Schwinger-Dyson equation for the gluon, and one gluon propagator determined in numerical lattice simulations. The gluon mass scale screens the force responsible for the chiral breaking, and the transition occurs only for a larger critical coupling constant than the one obtained with the perturbative propagator. The critical coupling shows a great sensibility to the gluon mass scale variation, as well as to the functional form of the gluon propagator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search of infrared finite solutions, paying particular attention to the role of the seagull graph in enforcing transversality, the necessity of introducing massless poles in the three-gluon vertex, and the incorporation of the correct renormalization group properties. In addition, we present a method for regulating the seagull-type contributions based on dimensional regularization; its applicability depends crucially on the asymptotic behavior of the solutions in the deep ultraviolet, and in particular on the anomalous dimension of the dynamically generated gluon mass. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles belonging to different Lorentz structures. The resulting integral equation is then solved numerically, the infrared and ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the effective gluon mass is determined. Various open questions and possible connections with different approaches in the literature are discussed. © SISSA 2006.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

No presente trabalho, estudamos a quebra da simetria quiral na pseudo eletrodinâmica quântica em (2+1) dimensões usando o formalismo das equações de Schwinger-Dyson e investigamos as semelhanças deste modelo com a criticalidade encontrada na EDQ3 e EDQ4. Usando a aproximação “quenched-rainbow”, mostramos que existe um acoplamento crítico αcc = π/16, acima do qual existe a geração de massa para os férmions e portanto, ocorrendo a quebra da simetria quiral. Também estudamos o caso com N campos fermiônicos usando a expansão 1/N na aproximação “unquenched-rainbow”, onde obtemos um número crítico Nc abaixo do qual a simetria quiral é quebrada e, para valores acima, a simetria é restaurada. No limite de acoplamento forte (g -- ∞), mostramos que este número crítico é o mesmo encontrado na EDQ3 na expansão 1/N.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Via large and small N c relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when N c is less than about six. Nevertheless useful nonper-turbative inequalities for the size of the conformal windows, for any number of colors, can be derived. By further observing that the adjoint conformal window is independent of the number of colors we argue, among other things, that: the large N c two-index conformal window is twice the conformal window of the adjoint representation (which can be determined at small N c) expressed in terms of Dirac fermions; lattice results for adjoint matter can be used to provide independent information on the conformal dynamics of two-index theories such as SU(N c) with two and four symmetric Dirac flavors.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We critically review the validity of heavy-quark spin and flavor symmetries in heavy-light decay constants, form factors and effective couplings obtained within a nonperturbative framework, the ingredients of which are all motivated by Dyson-Schwinger equations studies of QCD. Along the way, we make new predictions for two effective nonphysical couplings: gDsDK = 24.1-1.6 +2.5 and gBsBK = 33.3 -3.7 +4.0. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The momentum dependence of the ρ0-ω mixing contribution to charge-symmetry breaking (CSB) in the nucleon-nucleon interaction is compared in a variety of models. We focus in particular on the role that the structure of the quark propagator plays in the predicted behaviour of the ρ0-ω mixing amplitude. We present new results for a confining (entire) quark propagator and for typical propagators arising from explicit numerical solutions of quark Dyson-Schwinger equations We compare these to hadronic and free quark calculations The implications for our current understanding of CSB experiments is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study general properties of the Landau-gauge Gribov ghost form factor sigma(p(2)) for SU(N-c) Yang-Mills theories in the d-dimensional case. We find a qualitatively different behavior for d = 3, 4 with respect to the d = 2 case. In particular, considering any (sufficiently regular) gluon propagator D(p(2)) and the one-loop-corrected ghost propagator, we prove in the 2d case that the function sigma(p(2)) blows up in the infrared limit p -> 0 as -D(0) ln(p(2)). Thus, for d = 2, the no-pole condition sigma(p(2)) < 1 (for p(2) > 0) can be satisfied only if the gluon propagator vanishes at zero momentum, that is, D(0) = 0. On the contrary, in d = 3 and 4, sigma(p(2)) is finite also if D(0) > 0. The same results are obtained by evaluating the ghost propagator G(p(2)) explicitly at one loop, using fitting forms for D(p(2)) that describe well the numerical data of the gluon propagator in two, three and four space-time dimensions in the SU(2) case. These evaluations also show that, if one considers the coupling constant g(2) as a free parameter, the ghost propagator admits a one-parameter family of behaviors (labeled by g(2)), in agreement with previous works by Boucaud et al. In this case the condition sigma(0) <= 1 implies g(2) <= g(c)(2), where g(c)(2) is a "critical" value. Moreover, a freelike ghost propagator in the infrared limit is obtained for any value of g(2) smaller than g(c)(2), while for g(2) = g(c)(2) one finds an infrared-enhanced ghost propagator. Finally, we analyze the Dyson-Schwinger equation for sigma(p(2)) and show that, for infrared-finite ghost-gluon vertices, one can bound the ghost form factor sigma(p(2)). Using these bounds we find again that only in the d = 2 case does one need to impose D(0) = 0 in order to satisfy the no-pole condition. The d = 2 result is also supported by an analysis of the Dyson-Schwinger equation using a spectral representation for the ghost propagator. Thus, if the no-pole condition is imposed, solving the d = 2 Dyson-Schwinger equations cannot lead to a massive behavior for the gluon propagator. These results apply to any Gribov copy inside the so-called first Gribov horizon; i.e., the 2d result D(0) = 0 is not affected by Gribov noise. These findings are also in agreement with lattice data.