72 resultados para Schistosomes
Resumo:
Previous work in our laboratory, mainly foccused the prospects of achieving resistance against Schistosoma mansoni infection with adult worm-derived antigens in the form of a soluble extract (SE). This extract obtained by incubation of living adult schistosomes in saline, contains a large number of distinct molecules and was actually shown to be a significantly protective in different outbred animals models such as Swiss mice and rabbits. It thus appeared worthwile to investigate the potencial protective activity of SE in different inbred strains of mice, known to be highly susceptible to the infection. Herein we present data showing that DBA/2 mice, once immunized with SE acquire significant levels of resistance to a S. mansoni cercarial challenge. In addition, preliminary studies on the immune system of immunized animals reveled that, injection of SE caused no general inbalance of B or T cell responses.
Resumo:
The objective of this study is to determine whether various hycanthone resistant strains of schistosomes which have been independently isolated are all affected in the same gene. A strain obtained from a Brazilian patient was compared with a strain of Puerto Rican origin selected in the laboratory. If the mutation conferring resistance involved two different genes, one would expect that the progeny of a cross between the two strains would show complementation, i.e. it would be sensitive to the drug. We have performed such a cross and obtained F1 hybrid worms wich were essentially all resistant, thus suggesting that the mutation conferring resistance in the two strains involves the same gene.
Resumo:
The schistosomicidal activity of a new series of alkylaminooctanethiosulfuric acids was studied in white Swiss mice infected with the L.E. strain of Schistosoma mansoni (Belo Horizonte, MG, Brazil). In a preliminary screening of six compounds, two derivatives - 2-[(1-methylpropyl)amino]-1-octanethiosulfuric acid and 2-[(1-methylethyl)-amino]-1-octanethiosulfuric acid - given orally in doses of 300 mg/kg/day for five consecutive days, caused interruption of the oviposition and the hepatic shift of more than 90 of the worms. Both compounds caused a significant reduction in worm burden and, interestingly, the female schistosomes were more susceptible. With the therapeutic schedule of two doses of 800 mg/kg over a 20 day interval, the death of almost all the females and about 50 of the males was observed. Female worms recovered from treated mice showed scattered vitteline glands. Results of in vitro experiments against different developmental stages of the parasite revealed the induction of paralysis and damage to the tegument membrane. The drugs presented no toxic effects on the animals.
Resumo:
We have established an in vitro culture system for adult schistosomes that allows monitoring gene expression for up to more than ten days. Comparing female worms that are paired with those that have been separated, we find distinct differences, clearly documenting an influence of the male in female gene expression. In perfect coincidence with classical observations that were based on histological techniques, we find that the male particularly regulates gene expression in those tissues that are characterized by cell proliferation, e.g. the vitellaria. From these results, we hypothesize that the key target for the inductive signal that is transferred from the male to the female during pairing is the activation of a growth factor that stimulates mitotic proliferation.
Resumo:
Schistosomiasis is a chronic and debilitating parasitic disease that affects over 200 million people throughout the world and causes about 500,000 deaths annually. Two specific characteristics of schistosome infection are of primordial importance to the development of a vaccine: schistosomes do not multiply within the tissues of their definitive hosts (unlike protozoan parasites) and a partial non-sterilizing immunity can have a marked effect on the incidence of pathology and on disease transmission. Since viable eggs are the cause of disease pathology, a reduction in worm fecundity whether or not accompanied by a reduction in parasite burden is a sufficient goal for vaccine induced immunity. We originally showed that IgE antibodies played in experimental models a pivotal role for the development of protective immunity. These laboratory findings have been now confirmed in human populations. Following the molecular cloning and expression of a protein 28 kDa protein of Schistosoma mansoni and its identification as a glutathion S-transferase, immunization experiments have been undertaken in several animal species (rats, mice, baboons). Together with a significant reduction in parasite burden, vaccination with Sm28 GST was recently shown to reduce significantly parasite fecundity and egg viability leading to a decrease in liver pathology. Whereas IgE antibodies were shown to be correlated with protection against infection, IgA antibodies have been identified as one of the factors affecting egg laying and viability. In human populations, a close association was found between IgA antibody production to Sm28 GST and the decrease of egg output. The use of appropriate monoclonal antibody probes has allowed the demonstration that the inhibition of parasite fecundity following immunization was related to the inhibition of enzymatic activity of the molecule. Epitope mapping of Sm28 GST has indicated the prominent role of the N and C terminal domains. Immunization with the corresponding synthetic peptides was followed by a decrease of 70% of parasite fecundity and egg viability. As a preliminary step towards phase I human trials, vaccination experiments have been performed in cattle, a natural model for Schistosoma bovis. Vaccination of calves with the S. bovis GST has led to a reduction of ever 80% of egg output and tissue egg count. Significant levels of protection were also observed in goats after immunization with the recombinant S. bovis GST. Increasing evidence of the participation of IgA antibodies in protective immunity has prompted us toward the development of mucosal immunization. Preliminary results indicate that significant levels of protection can be achieved following oral immunization with live attenuated vectors or liposomes. These studies seem to represent a promising approach towards the future development of a vaccine strategy against one of major human parasitic diseases.
Resumo:
During their complex life cycle schistosomes alternate between the use of stored glycogen and reliance on host glucose to provide for their energy needs. In addition, there is dramatic variation between the relative contribution of aerobic versus anaerobic glucose metabolism during development. We have cloned a set of representative cDNAs that encode proteins involved in glucose uptake, glycolysis, Kreb's cycle and oxidative phosphorylation. The different cDNAs were used as probes to examine the expression of glucose metabolism genes during the schistosome life cycle. Steady state mRNA levels from whole cercariae, isolated cercarial tails, schistosomula and adult worms were analysed on Northern blots and dot blots which were quantified using storage phosphor technology. These studies reveal: (1) Transcripts encoding glycogen metabolic enzymes are expressed to much higher levels in cercarial tails than whole cercariae or schistosomula while the opposite pattern is found for glucose transporters and hexokinase transcripts; (2) Schistosomula contain low levels of transcripts encoding respiratory enzymes but regain the capacity for aerobic glucose metabolism as they mature to adulthood; (3) Male and female adults contain similar levels of the different transcripts involved in glucose metabolism.
Resumo:
The Centre de Recherche sur les Méningites et les Schistosomes (CERMES) is a research institute depending on the Organisation de Coordination et de Coopération pour la lutte contre les Grandes Endémies - a West African Organization for Public Health - devoted to the studies on schistosomiasis and meningitis. The staff includes 32 persons with 11 scientists and one financial officer. The activities of the CERMES involving schistosomiasis concern three research units: (a) ecology of human and animal schistosomiasis transmission; the CERMES defined the different patterns of schistosomiasis transmission in Niger (involving African dry savana); in this field, we have shown, (i) the existence of important variability in conditions of transmission of S. haematobium and, (ii) natural hybridization between parasitic species of the ruminants (S. bovis and S. curassoni) and genetic interaction between human and animal parasites; (b) definition of morbidity indicators usable for rapid assessment methods, for appraisal of the severity of the disease and for the evaluation of the efficiency of control methods; we have established the correlation between ultrasonographic data and some cheap and simple field indicators; (c) immune response and protective immunity induced by recombinant glutathion S-transferase (Sm28, Sb28 and Sh28) in homologous and heterologous animal models including goats, sheep and non human primates (Erythrocebus patas). In Niger, we participate in all control programs against schistosomiasis to define control strategies, to supervise operations and to participate in their evaluation with external experts. International collaborations constitute a frame including four laboratories in Africa and six laboratories in developed countries (Europe and USA)
Resumo:
"The host-parasite relationship" is a vast and diverse research field which, despite huge human and financial input over many years, remains largely shrouded in mystery. Clearly, the adaptation of parasites to their different host species, and to the different environmental stresses that they represent, depends on interactions with, and responses to, various molecules of host and/or parasite origin. The schistosome genome project is a primary strategy to reach the goal; this systematic research project has successfully developed novel technologies for qualitative and quantitative characterization of schistosome genes and genome organization by extensive international collaboration between top quality laboratories. Schistosomes are a family of parasitic blood flukes (Phylum Platyhelminthes), which have seven pairs of autosomal chromosomes and one pair of sex chromosomes (ZZ for a male worm and ZW for a female), of a haploid genome size of 2.7x108 base pairs (Simpson et al. 1982). Schistosomes are ideal model organisms for the development of genome mapping strategies since they have a small genome size comparable to that of well-characterized model organisms such as Caenorhabditis elegans (100 Mb) and Drosophila (165 Mb), and contain functional genes with a high level of homology to the host mammalian genes. Here we summarize the current progress in the schistosome genome project, the information of 3,047 transcribed genes (Expressed Sequence Tags; EST), complete sets of cDNA and genomic DNA libraries (including YAC and cosmid libraries) with a mapping technique to the well defined schistosome chromosomes. The schistosome genome project will further identify and characterize the key molecules that are responsible for host-parasite adaptation, i.e., successful growth, development, maturation and reproduction of the parasite within its host in the near future
Resumo:
Schistosomes, ancestors and recent species, have pervaded many hosts and several phylogenetic levels of immunity, causing an evolutionary pressure to eosinophil lineage expression and response. Schistosoma mansoni adult worms have capitalized on the apparent adversity of living within the mesenteric veins, using the dispersion of eggs and antigens to other tissues besides intestines to set a systemic activation of several haematopoietic lineages, specially eosinophils and monocytes/macrophages. This activation occurs in bone marrow, spleen, liver, lymph nodes, omental and mesenteric milky spots (activation of the old or primordial and recent or new lymphomyeloid tissue), increasing and making easy the migration of eosinophils, monocytes and other cells to the intestinal periovular granulomas. The exudative perigranulomatous stage of the periovular reaction, which present hystolitic characteristics, is then exploited by the parasites, to release the eggs into the intestinal lumen. The authors hypothesize here that eosinophils, which have a long phylogenic story, could participate in the parasite - host co-evolution, specially with S. mansoni, operating together with monocytes/ macrophages, upon parasite transmission.
Resumo:
The relationship between schistosomes and their intermediate hosts is an extremely intricate one with strains and species of the parasite depending on particular species of snail, which in turn may vary in their susceptibility to the parasites. In order to gain a better understanding of the epidemiology of the disease we have been investigating the use of molecular markers for snail identification and for studying host-parasite relationships. In this paper we will draw on examples concerning schistosomiasis in West and East Africa to illustrate how a molecular analysis can be used as part of a "total evidence" approach to characterisation of Bulinus species and provide insights into parasite transmission. Particular emphasis is given to ribosomal RNA genes (rRNA), random amplified polymorphic DNA (RAPDs) and the mitochondrial gene cytochrome oxidase I (COI). Snails resistant to infection occur naturally and there is a genetic basis for this resistance. In Biomphalaria glabrata resistance to Schistosoma mansoni is known to be a polygenic trait and we have initiated a preliminary search for snail genomic regions linked to, or involved in, resistance by using a RAPD based approach in conjunction with progeny pooling methods. We are currently characterising a variety of STSs (sequence tagged sites) associated with resistance. These can be used for local linkage and interval mapping to define genomic regions associated with the resistance trait. The development of such markers into simple dot-blot or specific PCR-based assays may have a direct and practical application for the identification of resistant snails in natural populations.
Resumo:
Schistosoma intercalatum, which causes human rectal schistosomiasis in Africa, still presents a great interest for its imprecise taxonomic status and its puzzling distribution in Africa. Two geographically isolated strains of S. intercalatum are recognized, the Lower Guinea strain and the Congo strain, which differ from each other in a number of morphological, biological and biochemical characteristics. Recent molecular data using RAPD markers indicate high divergence between the two strains, with values of Nei and Li's similarity indice allowing recognition of two genetically distinct taxa: experiments on pre- and post-isolating mechanisms are in progress in order to re-evaluate the taxonomic status of this polytypic species. With regard to its geographical distribution, S. intercalatum is characterized by the existence of two stable endemic areas (localized in Lower Guinea and North East of Democratic Republic of Congo) which correspond to the historical areas of species discovery, and the emergence during the last 15 years of new foci of the Lower Guinea strain outside previously known endemic areas. The absence of local adaptation of the Lower Guinea strain to its intermediate host, supported by experimental studies, may help to facilitate the spread of this strain. Nevertheless, the present restricted distribution of this species remains puzzling, because its potential snail hosts (bulinids) are widely distributed throughout much of Africa. Recent experimental and epidemiological studies suggest that interspecific sexual interactions between human schistosomes could have a role in limiting the distribution of S. intercalatum: the competitive sexual processes acting among human schistosomes show that S. haematobium and S. mansoni are always competitively dominant over S. intercalatum. These epidemiological observations lead the authors to distinguish three kinds of transmission foci for S. intercalatum.
Resumo:
Schistosomes undergo various morphological and metabolic changes during their development, reflected in a finely tuned regulation of protein and/or gene expression. The mechanisms involved in the control of gene expression during the development of the parasite are not understood. Two actin genes had been previously cloned and observed to be differentially expressed during the maturation of the parasite. The SmAct gene contains four putative cis-regulatory elements (TATA-, CCAAT-, E- and CArG-boxes). Our objective was to investigate in greater detail the expression pattern of two actin genes and verify if the binding of nuclear proteins to the promoter elements of SmAct correlated with the expression profile observed. We detected little variation in the expression of actin genes during the first seven days of schistosomula culture in vitro. However, we observed significantly higher levels of expression in males compared to female adults. CArG and CCAAT elements bound to a greater extent and formed distinct complexes with male in comparison to female nuclear extracts. In contrast, female extracts bound weakly to the E-box probe while no binding was observed with male extracts. Taken together these results describe cis-acting elements that appear to be involved in sexually regulated gene expression in Schistosoma mansoni.
Resumo:
An effective vaccine against schistosomiasis mansoni would be a valuable control tool and the high levels of protection elicited in rodents and primates by radiation-attenuated cercariae provide proof of principle. A major obstacle to vaccine development is the difficulty of identifying the antigens that mediate protection, not least because of the size of the genome at 280Mb DNA encoding 14,000 to 20,000 genes. The technologies collectively called proteomics, including 2D electrophoresis, liquid chromatography and mass spectrometry, now permit any protein to be identified provided there is extensive DNA data, and preferably a genome sequence. Applied to soluble (cytosolic) proteins from schistosomes, proteomics reveals the great similarity in composition between life cycle stages, with several WHO vaccine candidates amongst the most abundant constituents. The proteomic approach has been successfully applied to identify the secretions used by cercaria to penetrate host skin, the gut secretions of adult worms and the proteins exposed on the tegument surface. Soluble proteins can also be separated by 2D electrophoresis before western blotting to identify the full range of antigenic targets present in a parasite preparation. The next step is to discover which target proteins represent the weak points in the worm's defences.
Resumo:
The involvement of the central nervous system (CNS) by schistosomes may or may not determine clinical manifestations. When symptomatic, neuroschistosomiasis (NS) is one of the most severe presentations of schistosomal infection. Considering the symptomatic form, cerebral involvement is almost always due to Schistosoma japonicum and the spinal cord disease, caused by S. mansoni or S. haematobium. Available evidence suggests that NS depends basically on the presence of parasite eggs in the nervous tissue and on the host immune response. The patients with cerebral NS usually have the clinical manifestations of increased intracranial pressure associated with focal neurological signs; and those with schistosomal myeloradiculopathy (SMR) present rapidly progressing symptoms of myelitis involving the lower cord, usually in association with the involvement of the cauda esquina roots. The diagnosis of cerebral NS is established by biopsy of the nervous tissue and SMR is usually diagnosed according to a clinical criterion. Antischistosomal drugs, corticosteroids and surgery are the resourses available for treating NS. The outcome is variable and is better in cerebral disease.
Resumo:
More than 85% of all cases of schistosomiasis in Cameroon occur in the northern sahelian half of the country representing 20% of the population. Several workers have advocated the integrated approach to schistosomiasis control, including snail control, but the death and decay of aquatic organisms, and fish kill that often follows Bayluscide application at the dose of 1g/m³ decrease its acceptability. The present study was designed to assess the effect of lower Bayluscide doses on snail host and non-target fish, frog, the tadpole kill. Bayluscide was applied to study ponds at concentrations of 0, 0.25, 0.5, and 1 g/m³ (ppm). Pre and post application assessment of snails hosts of schistosomes, fish, frog, and tadpole kill were carried out. All 0.25, 0.5, and 1 g/m³ Bayluscide concentrations reduced snail population significantly. Bayluscide concentration of 0.50 g/m³ applied in two rounds of 0.25 g/m³ resulted in high snail mortality and low lethality to fish, frogs, and tadpoles. Further studies are needed to assess the cost-effectiveness of Bayluscide in the control of schistosomiasis following the simplified approach.