202 resultados para Schistosoma Haematobium


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background

G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum.

Results

Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification.

Conclusions

Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excretory secretory products (ESP) of Schistosoma mansoni developing larvae are ideal potential vaccines as such molecules may readily induce host primary immune responses, and local memory immune response effectors that would target, surround, and pursue the larvae while negotiating the lung blood capillaries. We herein characterized the cytokines response ESP, e.g., SG3PDH, 14-3-3-like protein, TPX, and calpain induce in the natural context of infection, and defined the global cytokine profile conducive to effective schistosome larvae killing. Accordingly, spleen cells (SC) taken from naive, and 7-, or 9-day S. mansoni-infected mice were stimulated in vitro with the selected ESP, in a recombinant or multiple antigen peptide (MAP) form, and examined for production of T helper type (Th) 1, Th2, and Th17 cytokines, and the ability to mediate in vitro attrition of lung-stage schistosomula. The study indicated that larval ESP principally elicit Th1 and Th17 type cytokines. Recombinant SG3PDH was the only test ESP to additionally activate SC from S. mansoni-infected BALB/c mice to release higher IL-4 levels than unstimulated SC and mediate significant (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The localization and distribution of SALMFamide immunoreactivity (IR), SI(GFNSALMFamide), in the nervous system of both the adult and larval stages of the trematode Schistosoma mansoni has been determined by an indirect immunofluorescent technique in conjunction with confocal scanning laser microscopy (CSLM). Immunostaining was widespread in the nervous system of adult male and female S. mansoni. In the central nervous system (CNS), IR was evident in nerve cells and fibres in the anterior ganglia, cerebral commissure and dorsal and ventral nerve cords. In the peripheral nervous system (PNS), IR was apparent in nerve plexuses associated with the subtegmental musculature, oral and ventral suckers, the lining of the gynaecophoric canal, and in fine nerve fibres innervating the dorsal tubercles of the male worm. In the reproductive system of male and female worms, S1-IR was only observed around the ootype/Mehlis' gland complex in the female. Immunostaining was also evident in the nervous system of both miracidium and cercarial larval stages. A post-embedding, IgG-conjugated colloidal gold immunostaining technique was employed to examine the subcellular distribution of SALMFamide-IR in the CNS of S. mansoni. Gold labelling of peptide was localized over dense-cored vesicles within nerve cell bodies and fibres constituting the neuropile of the anterior ganglia, cerebral commissure and nerve cords of the CNS. Antigen pre-absorption studies indicated that the results obtained do suggest S1-like immunostaining and not cross-reactivity with other peptides, in particular FMRFamide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the potent myoactivity of flatworm FMRFamide-related peptides (FaRPs) on isolated muscle fibers of the human blood fluke, Schistosoma mansoni. The turbellarian peptides YIRFamide (EC50 4 eta M), GYIRFamide (EC50 1 eta M). and RYIRFamide (EC50 7 eta M), all induced muscle contraction more potently than the cestode FaRP GNFFRFamide (EC50 500 eta M). Using a series of synthetic analogs of the flatworm peptides YIRFamide, GYIRFamide and RYIRFamide, the structure-activity relationships of the muscle FaRP receptor were examined. With a few exceptions, each residue in YIRFamide is important in the maintenance of its myoactivity. Alanine scans resulted in peptides that were inactive (Ala(1), Ala(2), Ala(3) and Ala(4) YIRFamide; Ala(4) and Ala(5) RYIRFamide) or had much reduced potencies (Ala(1), Ala(2) and Ala(3) RYIRFamide). Substitution of the N-terminal (Tyr(1)) residue of YIRFamide with the non-aromatic residues Thr or Arg produced analogs with greatly reduced potency. Replacement of the N-terminal Tyr with aromatic amino acids resulted in myoactive peptides (FIRFamide, EC50 100 eta M; WIRFamide, EC50 0.5 eta M). The activity of YIRFamide analogs which possessed a Leu(2), Phe(2) or Met(2) residue (EC50's 10, 1 and 3 eta M, respectively) instead of Ile(2) was not significantly altered, whereas, YVRFamide had a greatly reduced (EC50 200 eta M) activity. Replacement of the Phe(4) with a Tyr(4) (YIRYamide) also greatly lowered potency. Truncated analogs were either inactive (FRFamide, YRFamide, HRFamide, RFamide, Famide) or had very low potency (IRFamide and MRFamide), with the exception of nLRFamide (EC50 20 eta M). YIRF free acid was inactive. In summary, these data show the general structural requirements of this schistosome muscle FaRP receptor to be similar, but not identical, to those of previously characterized molluscan FaRP receptors. (C) 1997 Elsevier Science Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunochemical techniques were used to determine the distribution, chemical characteristics and relative abundance of immunoreactivity (IR) to two native platyhelminth neuropeptides, neuropeptide F (NPF) (Moniezia expansa) and the FMRFamide-related peptide (FaRP), GNFFRFamide, in the trematodes, Fasciola hepatica and Schistosoma mansoni; the larger S. margrebowiei was used in the chemical analysis. Extensive immunostaining for the two peptides was demonstrated throughout the nervous systems of both F. hepatica and S. mansoni, with strong IR also in the innervation of muscular structures, including those associated with the egg-forming apparatus. The patterns of immunostaining were similar to those previously described for the vertebrate neuropeptide Y superfamily of peptides and for FMRFamide. Ultrastructurally, gold labelling of NPF- and GNFFRFamide-IRs was localized exclusively to the contents of secretory vesicles in the axons and somatic cytoplasm of neurones. Double-labelling experiments showed an apparent homogeneity of antigenic sites, in all probability due to the demonstrated cross-reactivity of the FaRP antiserum with NPF. Radioimmunoassay of acid-ethanol extracts of the worms detected 8.3 pmol/g and 4.7 pmol/g equivalents of NPF- and FMRFamide-IRs, respectively, for F. hepatica, and corresponding values of 4.9 pmol/g and 4.3 pmol/g equivalents for S. margrebowiei. Gel-permeation chromatography resolved IR to both peptides in discrete peaks and these eluted in similar positions to synthetic NPF (M. expansa) and GNFFRFamide, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molluscan FMRFamide and two recently discovered platyhelminth FMRFamide-related peptides (FaRPs), GNFFRFamide from the cestode Moniezia expansa and RYIRFamide from the terrestrial turbellarian Artioposthia triangulata, cause dose-dependent contractions of individual muscle fibres from Schistosoma mansoni in vitro. The most potent FaRP tested was the turbellarian peptide RYIRFamide, which produced a concentration-dependent effect between 10(-9) and 10(-7) M. FMRFamide and GNFFRFamide were less potent, inducing contractions between 10(-8)-10(-6) M and 10(-7)-10(-5) M respectively. The contractile effect of each of these peptides was blocked by the presence of 1 mu M FMR-D-Famide. FMRF free acid did not elicit contraction of the muscle fibres. The FaRP-induced contractions did not occur if the Ca2+ was omitted and 0.5 mu M EGTA. was added to the extracellular medium. The FaRP-induced contractions were not blocked by the Ca2+ channel blockers nicardipine, verapamil or diltiazem, although high Kf-induced contractions of these fibres were blocked by nicardipine. These data indicate the presence of FaRP receptors on schistosome muscle fibres and demonstrate their ability to mediate muscle contraction. The action of these endogenous flatworm peptides on schistosome muscle is the first demonstration of a direct excitatory effect of any putative neurotransmitter on the muscle of a flatworm, and establishes a role for FaRPs in neuromuscular transmission in trematodes. In addition, it provides the first evidence that the peptidergic nervous system is a rational target for chemotherapeutic attack in parasitic platyhelmiths.