988 resultados para Scanning tunnelling microscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superlattice structures and rippling fringes were imaged on two separate pieces of graphite (HOPG) by scanning tunnelling microscopy (STM). We observed the corrugation conservation phenomenon on one of the superlattice structures where an overlayer does not attenuate the corrugation amplitude of the superlattice. Such a phenomenon may illustrate an implication that nanoscale defects a few layers underneath the surface may propagate through many layers without decay and form the superlattice structure on the topmost surface. Some rippling fringes with periodicities of 20 nm and 30 nm and corrugations of 0.1 nm and 0.15nm were observed in the superlattice area and in nearby regions. Such fringes are believed to be due to physical buckling of the surface. The stress required to generate such structures is estimated, and a possible cause is discussed. An equation relating the attenuation factor to the number of overlayers is proposed. © 2005 The Japan Society of Applied Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an in-depth study of the myriad atomically resolved patterns observed on graphite using the scanning tunnelling microscope (STM) over the past three decades. Through the use of highly resolved atomic resolution images, we demonstrate how the interactions between the different graphene layers comprising graphite affect the local surface atomic charge density and its resulting symmetry orientation, with particular emphasis on interactions that are thermodynamically unstable. Moreover, the interlayer graphene coupling is controlled experimentally by varying the tip-surface interaction, leading to associated changes in the atomic patterns. The images are corroborated by first-principles calculations, further validating our claim that surface graphene displacement, coming both from lateral and vertical displacement of the top graphene layer, forms the basis of the rich variety of atomic patterns observed in STM experiments on graphite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The probe tip is pivotal in determining the resolution and nature of features observed in the Scanning Tunnelling Microscope (STM). We have augmented a conventional Pt/Ir metallic tip with a hydrothermally grown ZnO nanowire (NW). Atomic resolution imaging of graphite is attained. Current-voltage (IV) characteristics demonstrate an asymmetry stemming from the unintentional n-type doping of the ZnO NW, whereas the expected Schottky barrier at the ZnO-Pt/Ir interface is shown to have negligible effect. Moreover the photoconductivity of the system is investigated, paving the way towards a photodetector capable of atomic resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid fibres displaying cytochrome b562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias (<1.5 V) the fibres appeared as regions of low conductivity with no evidence of cytochrome mediated electron transfer. At a high bias, stable peaks in tunnelling current were observed for all three fibre species containing haem and one species of fibre that did not contain haem. In images of this kind, some of the current peaks were collinear and spaced around 10 nm apart over ranges longer than 100 nm, but background monomers complicate interpretation. Images of the third kind were rare (1 in 150 fibres); in these, fully conducting structures with the approximate dimensions of fibres were observed, suggesting the possibility of an intermittent conduction mechanism, for which a precedent exists in DNA. To test the conductivity, some fibres were immobilized with sputtered gold, and no evidence of conduction between the grains of gold was seen. In control experiments, a variation of monomeric cytochrome b562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The denaturation of cytochrome-e (cyt-c) induced by bromopyrogal red (BPR) was studied by scanning tunnelling microscopy (STM) on the electrochemically pretreated highly oriented pyrolytic graphite (HOPG) surface. STM images reveal that denatured cyt-c molecules exist in variable states including aggregates, globular compact, partially unfolded and combined with BPR molecule. The apparently low image contrast of denatured cyt-c observed in this experiment comparing to that of native cyt-c molecules, and the relative low image contrast of the unfolded part comparing with the compact globular part, are ascribed to the unfavourable tunnelling paths for the conformational variations of denatured cyt-c molecules. (C) 1997 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic states of cytochrome c multilayers on electrochemically pretreated highly oriented pyrolytic graphite (HOPG) have been studied by in-situ scanning tunnelling microscopy (STM) under potential control of both the tip and the substrate in cytochrome c and phosphate buffer solution. The dynamic characterization of cytochrome c multilayers and relatively stable adsorbed single cytochrome c molecules scattered on HOPG imply that physically adsorbed multilayers were more easily influenced by the STM tip than those of chemically adsorbed single molecules. In-situ STM images of chemically adsorbed cytochrome c molecules with discernible internal structures on HOPG revealed that morphologies of cytochrome c molecules also suffered tip influence; possible tip-sample-substrate interactions have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immobilization of protein molecules is a fundamental problem for scanning tunnelling microscopy (STM) measurements with high resolution. In this paper, an electrochemical method has been proved to be an effective way to fix native horseradish peroxidase (HRP) as well as inactivated HRP from electrolyte onto a highly oriented pyrolytic graphite (HOPG) surface. This preparation is suitable for both ex situ and in situ electrochemical STM (ECSTM) measurements. In situ STM has been successfully employed to observe totally different structures of HRP in three typical cases: (1) in situ ECSTM reveals an oval-shaped pattern for a single molecule in neutral buffer solution, which is in good agreement with the dimension determined as 6.2 x 4.3 x 1.2. nm(3) by ex situ STM for native HRP; (2) in situ ECSTM shows that the adsorbed HRP molecules on HOPG in a denatured environment exhibit swelling globes at the beginning and then change into a V-shaped pattern after 30 min; (3) in situ ECSTM reveals a black hole in every ellipsoidal sphere for inactivated HRP in strong alkali solution. The cyclic voltammetry results indicate that the adsorbed native HRP can directly catalyse the reduction of hydrogen peroxide, demonstrating that a direct electron transfer reduction occurred between the enzyme and HOPG electrode, whereas the corresponding cyclic voltammograms for denatured HRP and inactivated HRP adsorbed on HOPG electrodes indicate a lack of ability to catalyse H2O2 reduction, which confirms that the HRP molecules lost their biological activity. Obviously, electrochemical results powerfully support in situ STM observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the early stages in the adsorption process of C60 molecules on a highly oriented pyrolitic graphite (HOPG) substrate. C60 powder was thermally evaporated in UHV of 10−8 Pa conditions onto a freshly cleaved HOPG surface. We did not observe individual fullerenes on the substrate for the case of short deposition times and low evaporation rates. However, small islands of C60 molecules with an fcc structure could be observed when the deposition rate was about 0.2 nm/min and the total thickness was above 1 nm. The islands did not grow in the vicinity of the HOPG steps. The typical lateral dimensions of these islands were of the order of a few hundred square nanometers, having thickness of up to five monolayers. We modified the shapes and positions of these islands by the STM tip, using a small (less than 1 V) bias voltage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold is the optimal tip metal for light emission in scanning tunnelling microscopy (LESTM) under ambient conditions. Sharp Au-tips of similar to 10nm radius were produced reliably using a safe, two-step etching method in 20% (w/w) CaCl2 solution. Previous CaCl2-based methods have tended to produce blunter tips, while other etching techniques that do produce sharp Au-tips, do so with the use of toxic or hazardous electrolytes. The tips are characterised using scanning electron microscopy and their efficacy in LESTM is evidenced by high-resolution, simultaneous topographic and photon mapping of Au(1 1 1)- and polycrystalline Au-surfaces. Spectra of the optical emission exhibit only one or two peaks with etched tips in contrast to the more complex spectra typical of cut tips; this feature, together with the highly symmetric geometry of the tips, facilitates a definitive analysis of the light emission process. (c) 2007 Elsevier B. V.. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The light emission spectrum from a scanning tunnelling microscope (LESTM) is investigated as a function of relative humidity and shown to provide a novel and sensitive means for probing the growth and properties of a water meniscus on the nanometre scale. An empirical model of the light emission process is formulated and applied successfully to replicate the decay in light intensity and spectral changes observed with increasing relative humidity. The modelling indicates a progressive water filling of the tip-sample junction with increasing humidity or, more pertinently, of the volume of the localized surface plasmons responsible for light emission; it also accounts for the effect of asymmetry in structuring of the water molecules with respect to the polarity of the applied bias. This is juxtaposed with the case of a non-polar liquid in the tip-sample nanocavity where no polarity dependence of the light emission is observed. In contrast to the discrete detection of the presence/absence of a water bridge in other scanning probe experiments through measurement of the feedback parameter for instrument control, LESTM offers a means of continuously monitoring the development of the water bridge with sub-nanometre sensitivity. The results are relevant to applications such as dip-pen nanolithography and electrochemical scanning probe microscopy.