995 resultados para Satellite DNA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Supernumerary chromosomes (B chromosomes) occur in approximately 15% of eukaryote species. Although these chromosomes have been extensively studied, knowledge concerning their specific molecular composition is lacking in most cases. The accumulation of repetitive DNAs is one remarkable characteristic of B chromosomes, and the occurrence of distinct types of multigene families, satellite DNAs and some transposable elements have been reported. Here, we describe the organization of repetitive DNAs in the A complement and B chromosome system in the grasshopper species Abracris flavolineata using classical cytogenetic techniques and FISH analysis using probes for five multigene families, telomeric repeats and repetitive C0t-1 DNA fractions. The 18S rRNA and H3 histone multigene families are highly variable and well distributed in A. flavolineata chromosomes, which contrasts with the conservation of U snRNA genes and less variable distribution of 5S rDNA sequences. The H3 histone gene was an extensively distributed with clusters occurring in all chromosomes. Repetitive DNAs were concentrated in C-positive regions, including the pericentromeric region and small chromosomal arms, with some occurrence in C-negative regions, but abundance was low in the B chromosome. Finally, the first demonstration of the U2 snRNA gene in B chromosomes in A. flavolineata may shed light on its possible origin. These results provide new information regarding chromosomal variability for repetitive DNAs in grasshoppers and the specific molecular composition of B chromosomes. © 2013 Bueno et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our objective was to estimate Bos primigenius taurus introgression in American Zebu cattle. One hundred and four American Zebu (Nellore) cattle were submitted to mtDNA, microsatellite and satellite analysis. Twenty-three alleles were detected in microsatellite analysis, averaging 4.6 +/- 1.82/locus. Variance component comparisons of microsatellite allele sizes allowed the construction of two clusters separating taurus and indicus. No significant variation was observed when indicus and taurus mtDNA were compared. Three possible genotypes of 1711b satellite DNA were identified. All European animals showed the same restriction pattern, suggesting a Zebu-specific restriction pattern. The frequencies of B. primigenius indicus-specific microsatellite alleles and 1711b satellite DNA restriction patterns lead to an estimate of 14% taurine contribution in purebred Nellore.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A satellite DNA sequence, As120a, specific to the A-genome chromosomes in the hexaploid oat, Avena sativa L., was isolated by subcloning a fragment with internal tandem repeats from a plasmid, pAs120, that had been obtained from an Avena strigosa (As genome) genomic library. Southern and in situ hybridization showed that sequences with homology to sequences within pAs120 were dispersed throughout the genome of diploid (A and C genomes), tetraploid (AC genomes), and hexaploid (ACD genomes) Avena species. In contrast, sequences homologous to As120a were found in two A-genome species (A. strigosa and Avena longiglumis) and in the hexaploid A. sativa whereas this sequence was little amplified in the tetraploid Avena murphyi and was absent in the remaining A- and C-genome diploid species. In situ hybridization of pAs120a to hexaploid oat species revealed the distribution of elements of the As120a repeated family over both arms of 14 of 42 chromosomes of this species. By using double in situ hybridization with pAs120a and a C genome-specific probe, three sets of 14 chromosomes were revealed corresponding to the A, C, and D genomes of the hexaploid species. Simultaneous in situ hybridizations with pAs120a and ribosomal probes were used to assign the SAT chromosomes of hexaploid species to their correct genomes. This work reports a sequence able to distinguish between the closely related A and D genomes of hexaploid oats. This sequence offers new opportunities to analyze the relationships of Avena species and to explore the possible evolution of various polyploid oat species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strand-specific transcripts of a satellite DNA of the newts, Notophthalmus and Triturus, are present in cells in monomeric and multimeric sizes. These transcripts undergo self-catalyzed, site-specific cleavage in vitro: the reaction requires Mg2+ and is mediated by a “hammerhead” domain. Transcription of the newt ribozyme appears to be performed by RNA polymerase II under the control of a proximal sequence element and a distal sequence element. In vitro, the newt ribozyme can cleave in trans an RNA substrate, suggesting that in vivo it might be involved in RNA processing events, perhaps as a riboprotein complex. Here we show that the newt ribozyme is in fact present as a riboprotein particle of about 12 S in the oocytes of Triturus. In addition, reconstitution experiments and gel-shift analyses show that a complex is assembled in vitro on the monomeric ribozyme molecules. UV cross-linking studies identify a few polypeptide species, ranging from 31 to 65 kDa, associated to the newt ribozyme with different affinities. Finally, we find that an appropriate oligoribonucleotide substrate is specifically cleaved by the riboproteic activity in S-100 ovary extracts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neocentromeres (NCs) are fully functional centromeres that arise ectopically in noncentromeric regions lacking α-satellite DNA. Using telomere-associated chromosome truncation, we have produced a series of minichromosomes (MiCs) from a mardel(10) marker chromosome containing a previously characterized human NC. These MiCs range in size from ≈0.7 to 1.8 Mb and contain single-copy intact genomic DNA from the 10q25 region. Two of these NC-based Mi-Cs (NC-MiCs) appear circular whereas one is linear. All demonstrate stability in both structure and mitotic transmission in the absence of drug selection. Presence of a functional NC is shown by binding a host of key centromere-associated proteins. These NC-MiCs provide direct evidence for mitotic segregation function of the NC DNA and represent examples of stable mammalian MiCs lacking centromeric repeats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kinetochores assemble on distinct 'centrochromatin' containing the histone H3 variant CENP-A and interspersed nucleosomes dimethylated on H3K4 (H3K4me2). Little is known about how the chromatin environment at active centromeres governs centromeric structure and function. Here, we report that centrochromatin resembles K4-K36 domains found in the body of some actively transcribed housekeeping genes. By tethering the lysine-specific demethylase 1 (LSD1), we specifically depleted H3K4me2, a modification thought to have a role in transcriptional memory, from the kinetochore of a synthetic human artificial chromosome (HAC). H3K4me2 depletion caused kinetochores to suffer a rapid loss of transcription of the underlying α-satellite DNA and to no longer efficiently recruit HJURP, the CENP-A chaperone. Kinetochores depleted of H3K4me2 remained functional in the short term, but were defective in incorporation of CENP-A, and were gradually inactivated. Our data provide a functional link between the centromeric chromatin, α-satellite transcription, maintenance of CENP-A levels and kinetochore stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Chromatin containing the histone variant CENP-A (CEN chromatin) exists as an essential domain at every centromere and heritably marks the location of kinetochore assembly. The size of the CEN chromatin domain on alpha satellite DNA in humans has been shown to vary according to underlying array size. However, the average amount of CENP-A reported at human centromeres is largely consistent, implying the genomic extent of CENP-A chromatin domains more likely reflects variations in the number of CENP-A subdomains and/or the density of CENP-A nucleosomes within individual subdomains. Defining the organizational and spatial properties of CEN chromatin would provide insight into centromere inheritance via CENP-A loading in G1 and the dynamics of its distribution between mother and daughter strands during replication. RESULTS: Using a multi-color protein strategy to detect distinct pools of CENP-A over several cell cycles, we show that nascent CENP-A is equally distributed to sister centromeres. CENP-A distribution is independent of previous or subsequent cell cycles in that centromeres showing disproportionately distributed CENP-A in one cycle can equally divide CENP-A nucleosomes in the next cycle. Furthermore, we show using extended chromatin fibers that maintenance of the CENP-A chromatin domain is achieved by a cycle-specific oscillating pattern of new CENP-A nucleosomes next to existing CENP-A nucleosomes over multiple cell cycles. Finally, we demonstrate that the size of the CENP-A domain does not change throughout the cell cycle and is spatially fixed to a similar location within a given alpha satellite DNA array. CONCLUSIONS: We demonstrate that most human chromosomes share similar patterns of CENP-A loading and distribution and that centromere inheritance is achieved through specific placement of new CENP-A near existing CENP-A as assembly occurs each cell cycle. The loading pattern fixes the location and size of the CENP-A domain on individual chromosomes. These results suggest that spatial and temporal dynamics of CENP-A are important for maintaining centromere identity and genome stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Centromeres are essential chromosomal loci at which kinetochore formation occurs for spindle fiber attachment during mitosis and meiosis, guiding proper segregation of chromosomes. In humans, centromeres are located at large arrays of alpha satellite DNA, contributing to but not defining centromere function. The histone variant CENP-A assembles at alpha satellite DNA, epigenetically defining the centromere. CENP-A containing chromatin exists as an essential domain composed of blocks of CENP-A nucleosomes interspersed with blocks of H3 nucleosomes, and is surrounded by pericentromeric heterochromatin. In order to maintain genomic stability, the CENP-A domain is propagated epigenetically over each cell division; disruption of propagation is associated with chromosome instabilities such as aneuploidy, found in birth defects and in cancer.

The CENP-A chromatin domain occupies 30-45% of the alpha satellite array, varying in genomic distance according to the underlying array size. However, the molecular mechanisms that control assembly and organization of CENP-A chromatin within its genomic context remain unclear. The domain may shift, expand, or contract, as CENP-A is loaded and dispersed each cell cycle. We hypothesized that in order to maintain genome stability, the centromere is inherited as static chromatin domains, maintaining size and position within the pericentric heterochromatin. Utilizing stretched chromatin fibers, I found that CENP-A chromatin is limited to a sub-region of the alpha satellite array that is fixed in size and location through the cell cycle and across populations.

The average amount of CENP-A at human centromeres is largely consistent, implying that the variation in size of CENP-A domains reflects variations in the number of CENP-A subdomains and/or the density of CENP-A nucleosomes. Multi-color nascent protein labeling experiments were utilized to examine the distribution and incorporation of distinct pools of CENP-A over several cell cycles. I found that in each cell cycle there is independent CENP-A distribution, occurring equally between sister centromeres across all chromosomes, in similar quantities. Furthermore, centromere inheritance is achieved through specific placement of CENP-A, following an oscillating pattern that fixes the location and size of the CENP-A domain. These results suggest that spatial and temporal dynamics of CENP-A are important for maintaining centromere and genome stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Résumé : La phase haploïde de la spermatogenèse (spermiogenèse) est caractérisée par une modification importante de la structure de la chromatine et un changement de la topologie de l’ADN du spermatide. Les mécanismes par lesquels ce changement se produit ainsi que les protéines impliquées ne sont pas encore complètement élucidés. Mes travaux ont permis d’établir la présence de cassures bicaténaires transitoires pendant ce remodelage par l’essai des comètes et l’électrophorèse en champ pulsé. En procédant à des immunofluorescences sur coupes de tissus et en utilisant un extrait nucléaire hautement actif, la présence de topoisomérases ainsi que de marqueurs de systèmes de réparation a été confirmée. Les protéines de réparation identifiées font partie de systèmes sujets à l’erreur, donc cette refonte structurale de la chromatine pourrait être génétiquement instable et expliquer le biais paternel observé pour les mutations de novo dans de récentes études impliquant des criblages à haut débit. Une technique permettant l’immunocapture spécifique des cassures bicaténaires a été développée et appliquée sur des spermatides murins représentant différentes étapes de différenciation. Les résultats de séquençage à haut débit ont montré que les cassures bicaténaires (hotspots) de la spermiogenèse se produisent en majorité dans l’ADN intergénique, notamment dans les séquences LINE1, l’ADN satellite et les répétions simples. Les hotspots contiennent aussi des motifs de liaisons des protéines des familles FOX et PRDM, dont les fonctions sont entre autres de lier et remodeler localement la chromatine condensée. Aussi, le motif de liaison de la protéine BRCA1 se trouve enrichi dans les hotspots de cassures bicaténaires. Celle-ci agit entre autres dans la réparation de l’ADN par jonction terminale non-homologue (NHEJ) et dans la réparation des adduits ADN-topoisomérase. De façon remarquable, le motif de reconnaissance de la protéine SPO11, impliquée dans la formation des cassures méiotiques, a été enrichi dans les hotspots, ce qui suggère que la machinerie méiotique serait aussi utilisée pendant la spermiogenèse pour la formation des cassures. Enfin, bien que les hotspots se localisent plutôt dans les séquences intergéniques, les gènes ciblés sont impliqués dans le développement du cerveau et des neurones. Ces résultats sont en accord avec l’origine majoritairement paternelle observée des mutations de novo associées aux troubles du spectre de l’autisme et de la schizophrénie et leur augmentation avec l’âge du père. Puisque les processus du remodelage de la chromatine des spermatides sont conservés dans l’évolution, ces résultats suggèrent que le remodelage de la chromatine de la spermiogenèse représente un mécanisme additionnel contribuant à la formation de mutations de novo, expliquant le biais paternel observé pour certains types de mutations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tobacco plants were transformed with a chimeric transgene comprising sequences encoding β-glucuronidase (GUS) and the satellite RNA (satRNA) of cereal yellow dwarf luteovirus. When transgenic plants were infected with potato leafroll luteovirus (PLRV), which replicated the transgene-derived satRNA to a high level, the satellite sequence of the GUS:Sat transgene became densely methylated. Within the satellite region, all 86 cytosines in the upper strand and 73 of the 75 cytosines in the lower strand were either partially or fully methylated. In contrast, very low levels of DNA methylation were detected in the satellite sequence of the transgene in uninfected plants and in the flanking nonsatellite sequences in both infected and uninfected plants. Substantial amounts of truncated GUS:Sat RNA accumulated in the satRNA-replicating plants, and most of the molecules terminated at nucleotides within the first 60 bp of the satellite sequence. Whereas this RNA truncation was associated with high levels of satRNA replication, it appeared to be independent of the levels of DNA methylation in the satellite sequence, suggesting that it is not caused by methylation. All the sequenced GUS:Sat DNA molecules were hypermethylated in plants with replicating satRNA despite the phloem restriction of the helper PLRV. Also, small, sense and antisense ∼22 nt RNAs, derived from the satRNA, were associated with the replicating satellite. These results suggest that the sequence-specific DNA methylation spread into cells in which no satRNA replication occurred and that this was mediated by the spread of unamplified satRNA and/or its associated 22 nt RNA molecules.