1000 resultados para Sargassum filipendula


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on growth and quantity of phycocolloids of Sargassum sp. and Gracilaria corticata was done on field and laboratorial works over one year from January 2003 to May 2004. Sargassum thalli began growth from January. The highest biomass value recorded 1611.04 gm^-2 was obtained in November. The receptacles appeared on November and released eggs. The senescence of Sargassum thalli was in December and the new thallus began to grow from January, The highest relative growth rate (6.74 percent) was in February. The relative growth rate showed significant correlation (p<0,05) with temperature. The highest value of alginate was in November (10.02 percent). Alginat content showed significant correlations (p<0.05) with Sargassum biomass. There was no significant effect of environmental factors on alginate content. The highest biomass of Graciiaria was in Match (49.88 gm^-2). Maximum relative growth rate of Gracilara (2 percent) was in December. Relative growth rate of Gracilaria (2.8 percent) was in December. Relative growth rate of Gracilaria showed significant correlations (p<0.05) with temperature. There was significant effect of ammonium (p<0.05) on growth factors of Gracilaria, maximum agar content was in August {10.005 percent). The yield of agar showed significant correlation (p<0.05) with Gracilaria biomass and ammonium in field and laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirty-six species of Sargassum collected on the sea shore of Vietnam are studied. Four taxa are new: S. Feldmannii, S. Congkinhii, S. piluliferum var. nhatrangensis and S. hemiphyllum forma serrata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examines the chemical composition and their effects on free radicals, inflammation, angiogenesis, coagulation, VEGF effects and cellular proliferation of a polysaccharides from alga Sargassum vulgare. The sulfated polysaccharide was extracted from brown seaweed by proteolysis with enzymes maxataze. The presence of proteins and sugars were observed in crude polysaccharides. Fractionation of this crude extract was made with growing concentration of acetone (0.3-1.5 v) and produced four groups of polysaccharides. Anionic polysaccharides from brown seaweed Sargassum vulgare, SV1and PSV1 were fractionated (SV1) and purified (PSV1), and displayed with high total sugars and sulfate content and very low level of protein. This fucan SV1 contains low levels of protein and high carbohydrate and sulfate content. This polysaccharides prolonged activated partial thromboplastin time (aPTT) at 50 μg (>240 s). SV1 was found to have no effect on prothrombin time (PT), corresponding to the extrinsic pathway of coagulation. SV1 exhibits high antithrombotic action in vivo, with a concentration ten times higher than heparin. Polysaccharides from S. vulgare promoted direct inhibition enzymatic activity of thrombin and stimulated enzymatic activity of FXa. SV1 showed optimal inhibitory activity of thrombin (50.2±0.28%) at a concentration of 25 μg/mL. Its antioxidant action on scavenging radicals by DPPH was (22%), indicating the polymer has no cytotoxic action (hemolytic) on ABO and Rh blood types in different erythrocyte groups and displays strong anti-inflammatory action on all concentrations tested in the carrageenan-induced paw edema model, demonstrated by reduced edema and cellular infiltration. Angiogenesis is a dynamic process of proliferation and differentiation. It requires endothelial proliferation, migration, and tube formation. In this context, endothelial cells are a preferred target for several studies and therapies. The antiangiogenic efficacy of polysaccharides was examined in vivo in the chick chorioallantoic membrane (CAM) model by using fertilized eggs. Decreases in the density of the capillaries were assessed and scored. The results showed that SV1 and PSV1 have an inhibitory effect on angiogenesis. These results were also confirmed by inhibition tubulogenesis in rabbit aorta endothelial cell (RAEC) in matrigel. These compounds were assessed in Apoptosis assay (Annexin V - FITC / PI) and cell viability by MTT assay of RAEC. These polysaccharides do not affect the viability and do not have apoptotic or necrotic action. RAEC cell when incubated with SV1 and PSV1showed inhibition of VEGF secretion, observed when compounds were incubated at 25, 50 and 100 μg/μL. The VEGF secretion with the RAEC cell line for 24 h, was more effective for PSV1 at 50 μg/μL(71.4%) than SV1 100 μg/μL (75.9%). SV1 and PSV1 had an antiproliferative action (47%) against tumor cell line HeLa. Our results indicate that these sulfated polysaccharides have antiangiogenic and antitumoral actions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of surfactants to improve enzymatic hydrolysis of the macroalgae Sargassum muticum has been investigated. Visible absorption spectroscopy has been used to quantify the solubilization of both polysaccharides and phlorotannins in the hydrolysates.   After total extraction, results showed that Sargassum muticum contained 2.74% (expressed in percent of the dry weight of the algae) of phlorotannins whose 32 % were in the cell wall. This result shows that it is important to access to the parietal phlorotannins. To reach this objective, we chose the enzymatic approach for destructurating the cell wall of the algae. The use of 5% dry weight (DW - 5% by weight of hydrolyzed algae) of an enzymatic mix containing a commercial beta-glucanase, a commercial protease and an alginate lyase extracted from Pseudomonas alginovora led after 3 hours of hydrolysis to the solubilization of 2.43% DW polysaccharides and 0.52% DW phlorotannins. The use of 0.5% volume of the surfactant Triton® X-100 with 10% DW of the enzymatic mix has allowed to reaching the value of 2.63% DW of solubilized phlorotannins, that is 96% of the total phenolic content.   The use of non-ionic surfactant, combined to enzymatic hydrolysis, showed an increased efficiency in disrupting cell wall and solubilizing phlorotannins in Sargassum muticum.