810 resultados para Saponified coconut oil
Resumo:
We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA) turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet), or the control diet containing soybean oil as fat source (10 mice per group). The fat content of each diet was 15% (w/w). Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL + VLDL)-cholesterol, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [³H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [³H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [³H]-AA uptake but induced an increase in [³H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress.
Resumo:
The thesis deals with some of the non-linear Gaussian and non-Gaussian time models and mainly concentrated in studying the properties and application of a first order autoregressive process with Cauchy marginal distribution. In this thesis some of the non-linear Gaussian and non-Gaussian time series models and mainly concentrated in studying the properties and application of a order autoregressive process with Cauchy marginal distribution. Time series relating to prices, consumptions, money in circulation, bank deposits and bank clearing, sales and profit in a departmental store, national income and foreign exchange reserves, prices and dividend of shares in a stock exchange etc. are examples of economic and business time series. The thesis discuses the application of a threshold autoregressive(TAR) model, try to fit this model to a time series data. Another important non-linear model is the ARCH model, and the third model is the TARCH model. The main objective here is to identify an appropriate model to a given set of data. The data considered are the daily coconut oil prices for a period of three years. Since it is a price data the consecutive prices may not be independent and hence a time series based model is more appropriate. In this study the properties like ergodicity, mixing property and time reversibility and also various estimation procedures used to estimate the unknown parameters of the process.
Resumo:
In this paper we try to fit a threshold autoregressive (TAR) model to time series data of monthly coconut oil prices at Cochin market. The procedure proposed by Tsay [7] for fitting the TAR model is briefly presented. The fitted model is compared with a simple autoregressive (AR) model. The results are in favour of TAR process. Thus the monthly coconut oil prices exhibit a type of non-linearity which can be accounted for by a threshold model.
Resumo:
One of the major problems facing aquaculture is the inadequate supply of fish oil mostly used for fish feed manufacturing. The continued growth in aquaculture production cannot depend on this finite feed resources, therefore, it is imperative that cheap and readily available substitutes that do not compromise fish growth and fillet quality be found. To achieve this, a 12-week feeding trial with Heterobranchus longifilis fed diets differing in lipid source was conducted. Diets were supplemented with 6% lipid as fish oil, soybean oil, palm oil, coconut oil, groundnut oil and melon seed oil. Triplicate groups of 20 H. longifilis were fed the experimental diets two times a day to apparent satiation, over 84 days. Growth, digestibility, and muscle fatty acid profile were measured to assess diet effects. At the end of the study, survival, feed intake and hepatosomatic index were similar for fish fed experimental diets. However, weight gain, SGR and FCR of fish fed soybean oil-based diet was significantly reduced. Apparent nutrient digestibility coefficients were significantly lower in fish fed soybean, coconut and groundnut oil-based diets. Fillet and hepatic fatty acid compositions differed and reflected the fatty acid compositions of the diets. Docosahexaenoic acid (22:6n-3), 20:5n-3 and 20:4n-6 were conserved in vegetable oils-based diets fed fish possibly due to synthesis of HUFA from 18:3n-3 and 18:4n-6. Palm oil diet was the least expensive, and had the best economic conversion ratio. The use of vegetable oils in the diets had positive effect on growth and fillet composition of H. longifilis.
Resumo:
The rheological, emulsification and certain physicochemical properties of purified exopolysaccharides (EPS) of Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205 were studied and compared with those of guar gum and xanthan gum. The two strains were grown in skim milk supplemented with 1.5% (w/v) casein hydrolysate at 37 ◦C for 24 h; they both produced heteropolysaccharides with different molecular mass and composition. The carbohydrate content of both polymers was more than 92% and no protein was detected. The EPS of B. longum subsp. infantis CCUG 52486 showed highly branched entangled porous structure under scanning electron microscopy. Higher intrinsic viscosity was observed for the EPS of B. longum subsp. infantis CCUG 52486 compared to the EPS of B. infantis NCIMB 702205 and guar gum. Both polymers showed pseudoplastic non-Newtonian fluid behaviour in an aqueous solution. The EPS of B. infantis NCIMB 702205 and B. longum subsp. infantis CCUG 52486 produced more stable emulsions with orange oil, sunflower seed oil, coconut oil and xylene compared to guar and xanthan gum. The EPS of B. longum subsp. infantis CCUG 52486 is the most promising one for applications in the food industry, as it had higher intrinsic viscosity, higher apparent viscosity in aqueous solution, porous dense entangled structure and good emulsification activity.
Resumo:
The program PROBIODIESEL from the Ministry of Science and Technology has substantially increased glycerine, obtained as a sub-product of biodiesel production process, making it necessary to seek alternatives for the use of this co-product. On the other hand, herbicides although play a role of fundamental importance in the agricultural production system in force, have been under growing concern among the various segments of society because of their potential environmental risk. In this work, we used glycerin in microemulsion systems for application of herbicides, to improve efficiency and lower environmental pollution caused by the loss of those products to the environment. To obtain the systems of microemulsinados were used Unitol L90 NP and Renex 40 as surfactants, butanol as co-surfactant, coconut oil as oil phase and aqueous phase as we used solutions of glycerin + water. Through the determination of phase diagrams, the microemulsion region was found in the system E (L90 Unitol, coconut oil and glycerin + water 1:1). Three points were chosen to the aqueous phase rich in characterization and application in the solubilization of glyphosate and atrazine. Three experiments were performed in Horta, Department of Plant Sciences, Plant Science Sector, UFERSA, Mossoró-RN. The first experiment was conducted in randomized complete blocks with 20 treatments and four replications. The treatments consisted of five doses of the herbicide glyphosate (0.0, 0.45, 0.9, 1.35 and 1.8 L ha-1) diluted with four sauces: C1, C2, C3 (microemulsions) and C4 (water). The phytotoxicity of Brachiaria brizantha was measured at 7, 14, 28 and 60 DAA (days after application). At 60 DAA, we evaluated the biomass of plants. The second experiment was developed in randomized complete blocks with 20 treatments and four repetitions. The treatments consisted of five doses of the herbicide atrazine (0.0, 0.4, 0.8, 1.6 and 2.4 L ha-1) diluted with four sauces: C1, C2, C3 (microemulsions) and C4 (water). The phytotoxicity on Zea mays and Talinum paniculatum was evaluated at 2, 7, 20 DAA. The experiment III was developed in randomized complete blocks with 16 treatments and three repetitions. The treatments consisted of 16 combinations among the constituents of the microemulsion: Unitol L90 surfactant (0.0, 1.66, 5.0, 15 %) and glycerin (0.0, 4.44, 13.33 and 40.0 %). The phytotoxicity on Zea mays was evaluated at 1, 7 and 14 DAA. At 14 DAA, we evaluated the biomass of plants. The control plants using the microemulsions was lower than in the water due to the poisoning caused by the initial microemulsions in the leaves of the plants, a fact that hinders the absorption and translocation of the herbicide. There was no toxicity in Zea mays plants caused by the herbicide, however, were highly intoxicated by microemulsions. T. paniculatum was better controlled in spraying with the microemulsions, regardless of the dose of the herbicide. The glycerine did not cause plant damage. Higher poisoning the plants are caused by tensoactive Unitol L90 and higher rates occur with the use of higher concentrations of surfactant and glycerin, or microemulsion. The microemulsions used hampered the action of glyphosate in controlling B. brizantha and caused severe poisoning in corn, and these poisonings attributed mainly to the action of surfactant
Resumo:
The production of biodiesel has become an important and attractive process for the production of alternative fuels. This work presents a study of the biodiesel production from coconut oil (Cocos nucifera L.), by two routes: direct transesterification using NaOH as catalyst and esterification (with H2SO4) followed by basic transesterification. The reactor was built in pirex with 1L of capacity and was equipped with a jacket coupled with a thermostatic bath to temperature control, a mecanical stirring is also present in the reactor. The analysis of oil composition was carried out by gas chromatography and esters compounds were identified. The parameters of molar ratio oil/alcohol, reaction time and temperature were studied and their influence on the conversion products was evaluated using experimental planning (23). The molar ratio was the most significant variable by the statistical planning analysis. Conversions up to 85.3% where achived in the esterification/transesterification, with molar ratio 1:6 at 60ºC and 90 minutes of reaction. For the direct transesterification, route conversions up 87.4% eas obtained using 1:6.5 molar ratio at 80ºC and 60 minutes of reaction. The Coconut oil was characterized by their physic chemical properties and key constituents of the oil. The lauric acid was the main constituint and the oil showed high acidity. The biodiesel produced was characterized by its main physicochemical properties, indicating satisfactory results when compared to standard values of National Petroleum Agency. The work was supplemented with a preliminary assessment of the reaction kinetic
Resumo:
Petroleum can be associated or not with natural gas, but in both cases water is always present in its formation. The presence of water causes several problems, such as the difficulty of removing the petroleum from the reservoir rock and the formation of waterin-oil and oil-in-water emulsions. The produced water causes environmental problems, which should be solved to reduce the effect of petroleum industry in the environment. The main objective of this work is to remove simultaneously from the produced water the dispersed petroleum and dissolved metals. The process is made possible through the use of anionic surfactants that with its hydrophilic heads interacts with ionized metals and with its lipophilic tails interacts with the oil. The studied metals were: calcium, magnesium, barium, and cadmium. The surfactants used in this research were derived from: soy oil, sunflower oil, coconut oil, and a soap obtained from a mixture of 5wt.% coconut oil and 95wt.% animal fat. It was used a sample of produced water from Terminal de São Sebastião, São Paulo. As the concentration of the studied metals in produced water presented values close to 300 mg/L, it was decided to use this concentration as reference for the development of this research. Molecular absorption and atomic absorption spectroscopy were used to determine petroleum and metals concentrations in the water sample, respectively. A constant pressure filtration system was used to promote the separation of solid and liquid phases. To represent the behavior of the studied systems it was developed an equilibrium model and a mathematical one. The obtained results showed that all used surfactants presented similar behavior with relation to metals extraction, being selected the surfactant derived from soy oil for this purpose. The values of the partition coefficients between the solid and liquid phases " D " for the studied metals varied from 0.2 to 1.1, while the coefficients for equilibrium model " K " varied from 0.0002 and 0.0009. The removal percentile for oil with all metals associated was near 100%, showing the efficiency of the process
Resumo:
The developments in formulating drilling fluids to apply in petroleum fields are based on new technologies and environmental challenges, where the technical performance of a developed drilling fluid is used to produce a minimum environmental impact, showing great economy in costs. It is well known that the potential use of oil-based drilling fluids is limited because these fluids when discharged in the sea do not disperse as much as water-based ones and may form waterproof films in the seabed, having a profound effect on plants and animals living in this environment. The current works have been made in investigating fluids called pseudofluids, which are synthetic ester-based, n-paraffin-based and other fluids formed from inverse emulsion. In this research the principal parameters involved in inverse emulsion process were studied, in laboratory scale, using esters as main component. Others commercial drilling fluids were used as comparative samples, as well as samples from laboratory and field where these drilling fluids are being applied. Concentrations of emulsifier and organophilic clay, which are viscosity donor, were varied to verify the influence of these parameters, in different oil/water ratios (55/45, 60/40, 65/35, 70/30, and 75/25). The salt concentration (NaCl) is an indicative parameter of stability and activity of an esterbased fluid. In this research the salt concentration was varied in 10,000, 20,000, and 50,000 ppm of NaCl. Some rheological properties of the produced fluids were studied, such as: initial gel, plastic viscosity, yield point, and apparent viscosity. Through the obtained rheological measures, the existence of two systems could be verified: fluid and flocculated. It could be noticed that the systems were influenced, directly, by the oil/water ratio and emulsifier, organophilic clay and NaCl concentrations. This study showed the viability to use an ester obtained from a regional vegetable product babaçu coconut oil to obtain an efficient and environmental safe drilling fluid
Resumo:
The constant search for biodegradable materials for applications in several fields shows that carnauba wax can be a viable alternative in the manufacturing of biolubricants. Carnauba wax is the unique among the natural waxes to have a combination of properties of great importance. In previous studies it was verified the presence of metals in wax composition that can harm the oxidative stability of lubricants. Considering these factors, it was decided to develop a research to evaluate iron removal from carnauba wax, using microemulsion systems (Me) and perform the optimization of parameters, such as: extraction pH, temperature, extraction time, among others. Iron concentration was determined by atomic absorption and, to perform this analysis, sample digestion in microwave oven was used, showing that this process was very efficient. It was performed some analysis in order to characterize the wax sample, such as: attenuated total reflectance infrared spectroscopy (ATR-IR), thermogravimetry (TG), differential scanning calorimetry (DSC), energy dispersive X-ray fluorescence (EDXRF), scanning electron microscopy (SEM) and melting point (FP). The microemulsion systems were composed by: coconut oil as surfactant, n-butanol as cosurfactant, kerosene and/or heptanes as oil phase, distilled water as water phase. The pH chosen for this study was 4.5 and the metal extraction was performed in finite experiments. To evaluate Me extraction it was performed a factorial design for systems with heptane and kerosene as oil phase, also investigating the influence of temperature time and wax/Me ratio, that showed an statistically significant answer for iron extraction at 95% confidence level. The best result was obtained at 60°C, 10 hours contact time and 1: 10 wax/Me ratio, in both systems with kerosene and heptanes as oil phase. The best extraction occurred with kerosene as oil phase, with 54% iron removal
Resumo:
Copper is one of the most used metals in platingprocesses of galvanic industries. The presence of copper, a heavy metal, in galvanic effluents is harmful to the environment.The main objective of this researchwas the removal ofcopperfromgalvanic effluents, using for this purpose anionic surfactants. The removal process is based on the interaction between the polar head group of the anionic surfactant and the divalent copper in solution. The surfactants used in this study were derived from soybean oil (OSS), coconut oil (OCS), and sunflower oil (OGS). It was used a copper synthetic solution (280 ppm Cu+2) simulating the rinse water from a copper acid bath of a galvanic industry. It were developed 23and 32 factorial designs to evaluate the parameters that have influence in theremoval process. For each surfactant (OSS, OCS, and OGS), the independent variables evaluated were: surfactant concentration (1.25 to 3.75 g/L), pH (5 to 9) and the presence of an anionic polymer (0 to 0.0125 g/L).From the results obtained in the 23 factorial design and in the calculus for estimatingthe stoichiometric relationship between surfactants and copper in solution, it were developed new experimental tests, varying surfactant concentration in the range of 1.25 to 6.8 g/L (32 factorial design).The results obtained in the experimental designs were subjected to statistical evaluations to obtain Pareto charts and mathematical modelsfor Copper removal efficiency (%). The statistical evaluation of the 23 and 32factorial designs, using saponifiedcoconut oil (OCS), presented the mathematical model that best described the copper removal process.It can be concluded that OCS was the most efficient anionic surfactant, removing 100% of the copper present in the synthetic galvanic solution
Resumo:
The study of a promising alternative for the treatment of produced water from the oil industry envisaging its reuse was the focus of this work. Millions of liters of water are generated per day, containing heavy metals in low concentrations (< 0,15 mg/L for Pb, <0,04 mg/L for Cd, <0,04 mg/L for Ni). The technology applied to extract these metals from aqueous phase was the solvent extraction and the extratants used were vegetable oils originated from coconut oil. They can be used in natural form or as derivatives, known as MAC - Mixture of Carboxílics Acids. The determination of the heavy metal con¬centrations in a complex matrix was made by using the atomic absorption spectrometry technique (AAS). On the bench tests using synthetics aqueous solutions containing metals, vegetable oils showed no power to extract the metals studied. The extractant MAC was selective for the Pb> Cd> Ni, in the concentration of 8% in the same organic phase. In this condition, the lower efficiency of extraction obtained was 92% for the Pb, 69% for the Cd, in the range of pH ranging from 6 to 8. An experimental planning was conducted for continuous tests. The device used was called MDIF Misturador-Decantador à Inversão de Fases and the aqueous phase was produced water from Pólo Indutrial de Guamaré/RN . No correlation between the studied variables (concentration of metal, concentration of extratant and agitation in the mixing chamer) could be obtained, because of possible factors which occurred as: variation in the composition of the studied sample, phenomena of precipitation and complexation of metals in the reservoir of feed, solubility of extratant
Resumo:
Physical exercise and statins, recommended interventions to dyslipidaemia treatment, are independently related to cardiomyocytes alterations, characterized by miocardic hypertrophy and apoptosis, respectively. Thus, the objective of the present study was to analyze the effects of statin and aerobic physical exercise association in the morphometric parameters of cardiac cell nucleus. 40 male rats adults were divided into four groups: exercised (DE); sedentary (DS), exercised and statin use (DES); sedentary and statin use (DSS). The animals received during the whole experimental period a hiperlipidic diet added 20% of coconut oil and 1.25% of cholesterol; after 30 days of its ingestion, a blood collection was made to verify the dyslipidaemia. Simvastatin (20 mg) was taken five days a week, during eight weeks. During this period, the animals exercised 60 minutes daily in the treadmill. After the last day of the protocol, the cardiac muscle was collected and maintained in liquid nitrogen (-180 degrees C); the cuts were stained by Hematoxilin-Eosin method, and the cardiac fibers were submitted to the nuclear morphometric analyses. The data were analyzed using descriptive analyses, paired T test, Kruskal-Wallis test and Dunn post hoc test; for all analyses, it was adopted p<0.05. It was verified that the group receiving statin presented values statistically significant in comparison to the other groups, in the tridimensional and linear variables. The exercised and statin group, the values obtained in the morphometric analyses were similar to the control group. It is suggested that statins alone can cause alterations in the nucleus of cardiac cells that can be related to apoptosis occurrence and, when exercise is practiced associated to statin administration, the effects of statin can be reduced, what can be related to beneficial adaptations of cardiac mitochondrial in response to physical exercise, turning them more resistant to apoptotic stimuli.
Resumo:
Physical exercise and statins, which are recommended for the treatment of dyslipidemia, are independently associated to the occurrence of muscle injury. The objective is analyze the effect of aerobic exercise associated to the use of simvastatin on the morphology of the gastrocnemius muscle. Thirty Wistar rats were divided into six groups, two of which received a standard diet (1 sedentary and 1 exercised) and four (1 sedentary with medication, 1 sedentary without medication, 1 exercised with medication, 1 exercised without medication) received a hypercholesterolemic diet (standard diet with the addition of cholesterol and coconut oil). Simvastatin (20 mg/Kg) was administered five days a week for eight weeks, together with aerobic training on a treadmill (9.75 m/min) for 60 minutes a day. The gastrocnemius muscle was removed, sliced, stained with Hematoxylin-Eosin and submitted to a histochemical reaction to determine mitochondrial activity. The data were analyzed using a paired t-test, analysis of variance and Scheffe's post hoc test (p<0.05). Greater histological alterations were found in the medicated and exercised animals, with a greater frequency of occurrence as well. The histochemical analysis revealed that the medicated groups had fibers with more intensive mitochondrial activity alongside fibers with an absence of reaction. The morphometric analysis revealed no significant differences between groups. It is suggested that simvastatin is a medication that leads to the occurrence of muscle injury and its administration in association with physical activity may exacerbate these injuries. This finding may be related to cellular respiration.
Resumo:
Dois experimentos foram realizados para avaliar a digestibilidade aparente da EB, MS e PB em alimentos energéticos e protéicos utilizados para cães adultos. Foram utilizados quatro cães adultos (13,1 ± 2,0 kg), dois machos e duas fêmeas, sem raça definida, na avaliação de cada alimento. Os animais receberam a mesma quantidade de ração por unidade de peso metabólico. No experimento 1, foi determinado o valor nutritivo dos alimentos energéticos e, no experimento 2, os coeficientes de digestibilidade dos alimentos protéicos. Os coeficientes de digestibilidade da EB do milho extrusado (ME), do milho gelatinizado (MG), da gordura de coco e do óleo de soja, em dois níveis de inclusão (OS1 e OS2), e da gordura suína foram, respectivamente, 85,1; 84,4; 92,5; 92,1; 96,2 e 98,6%. Os coeficientes de digestibilidade da MS e PB do ME e MG foram, respectivamente, 84,2 e 65,3 e 84,5 e 65,0%. Na soja integral extrusada e nas farinhas de carne, de carne extrusada, de vísceras, de vísceras extrusada, de peixe extrusada e de pena extrusada, foram obtidos, respectivamente, os seguintes coeficientes de digestibilidade: 80,0; 73,3; 80,7; 87,6; 91,2; 91,1 e 79,8% da EB; 80,0; 68,4; 87,8; 86,7; 88,1; 85,2 e 76,0% da MS; e 83,7; 74,7; 82,3; 88,0; 88,9; 91,9 e 82,3% da PB.