865 resultados para Salt domes
Resumo:
The structures of the 1:1 co-crystalline adduct C8H6BrN3S . C7H5NO4 (I) and the salt C8H7BrN3S+ C7H3N2O7- (II) from the interaction of 5-(4-bromophenyl)-1,3,4-thiadiazol-2-amine with 4-nitrobenzoic acid and 3,5-dinitrosalicylic acid, respectively, have been determined. The primary inter-species association in both (I) and (II) is through duplex R2/2(8) (N-H...O/O-H...O) or (N-H...O/N-H...O) hydrogen bonds, respectively, giving heterodimers. In (II), these are close to planar [dihedral angles between the thiadiazole ring and the two phenyl rings are 2.1(3)deg. (intra) and 9.8(2)deg. (inter)], while in (I) these angles are 22.11(15) and 26.08(18)deg., respectively. In the crystal of (I), the heterodimers are extended into a one-dimensional chain along b through an amine N-...N(thiadiazole) hydrogen bond but in (II), a centrosymmetric cyclic heterotetramer structure is generated through N-H...O hydrogen bonds to phenol and nitro O-atom acceptors and features, together with the primary R2/2(8) interaction, conjoined R4/6(12), R2/1(6) and S(6) ring motifs. Also present in (I) are pi--pi interactions between thiadiazole rings [minimum ring centroid separation, 3.4624(16)deg.] as well as short Br...O(nitro) interactions in both (I) and (II) [3.296(3)A and 3.104(3)A, respectively].
Resumo:
The structures of the isomorphous potassium and rubidium polymeric coordination complexes with 4-nitrobenzoic acid, poly[mu2-aqua-aqua-mu3-(4-nitrobenzoato)-potassium], [K(C7H4N2O2)(H2O)2]n, (I) and poly[mu3-aqua-aqua-mu5-(4-nitrobenzoato)-rubidium], [Rb(C7H4N2O2)(H2O)2]n, (II) have been determined. In (I) the very distorted KO6 coordination sphere about the K+ centres in the repeat unit comprise two bridging nitro O-atom donors, a single bridging carboxyl O-atom donor and two water molecules, one of which is bridging. In the the Rb complex (II), the same basic MO6 coordination is found in the repeat unit but is expanded to RbO9 through a slight increase in the accepted Rb-O bond length range and includes an additional Rb-O(carboxyl) bond, completing a bidentate O,O'-chelate interaction, and additional bridging Rb-Onitro) and Rb-O(water) bonds. The comparative K-O and Rb-O bond length ranges are 2.738(3)-3.002(3)Ang. (I) and 2.884(2)-3.182(2)Ang. (II). The structure of (II) is also isomorphous as well as isostructural with the known structure of the nine-coordinate caesium 4-nitrobenzoate analogue, [Cs(C7H4N2O~2~)(H~2~O)2]n, (III) in which the Cs---O range is 3.047(4)-3.338(4)Ang. In all three complexes, common basic polymeric extensions are found, including two different centrosymmetric bridging interactions through both water and nitro groups as well as extensions along c through the p-related carboxyl group, giving a two-dimensional structure in (I). In (II) and (III), three-dimensional structures are generated through additional bridges through the nitro and water O-atoms. In all structures, both water molecules are involved in similar intra-polymer O-H...O hydrogen-bonding interactions to both carboxyl as well as water O-atom acceptors. A comparison of the varied coordination behaviour of the full set of Li-Cs salts with 4-nitrobenzoic acid is also made.
Resumo:
In the structure of the title complex [[Na(H2O)3]+ (C6H2Cl3N2O2)-^ . 3(H2O)]n, the Na salt of the herbicide picloram, the cation is a polymeric chain structure, based on doubly water-bridged NaO5 trigonal bipyramidal complex units which have in addition, a singly-bonded monodentate water molecule. Each of the bridges within the chain which lies along the a cell direction is centrosymmetric with Na...Na separations of 3.4807(16) and 3.5109(16)Ang. In the crystal, there are three water molecules of solvation and these, as well as the coordinated water molecules and the amino group of the 4-amino-3,5,6-trichloropicolinate anion are involved in extensive inter-species hydrogen-bonding interactions with carboxyl and water O-atoms as well as the pyridine N-atom. Among these association is a centrosymmetric cyclic tetra-water R4/4(8) ring , resulting in an overall three-dimensional structure.
Resumo:
The structures of two hydrated salts of 4-aminophenylarsonic acid (p-arsanilic acid), namely ammonium 4-aminophenylarsonate monohydrate, NH4(+)·C6H7AsNO3(-)·H2O, (I), and the one-dimensional coordination polymer catena-poly[[(4-aminophenylarsonato-κO)diaquasodium]-μ-aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter-species N-H...O and arsonate and water O-H...O hydrogen bonds, giving the common two-dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen-bonding interactions involving the para-amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na(+) cation is coordinated by five O-atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square-pyramidal coordination environment. The water bridges generate one-dimensional chains extending along c and extensive interchain O-H...O and N-H...O hydrogen-bonding interactions link these chains, giving an overall three-dimensional structure. The two structures reported here are the first reported examples of salts of p-arsanilic acid.
Resumo:
A new liquid crystalline phase, induced by the addition of small amounts of a non-mesogenic solute (such as dimethyl sulphoxide or methyl iodide) to a quaternary ammonium salt, N-methyl-N,N,N-trioctadecylammonium iodide (MTAI), has been detected by NMR and optical microscopic studies. In some cases, there is a coexistence of nematic and smectic phases. Information on the ordering of the phases in the magnetic field of the spectrometer has been derived from NMR spectra of a dissolved molecule, C-13-enriched methyl iodide. The low order parameter of the pure thermotropic nematic phase of the salt provides first-order spectra of the dissolved oriented molecules. Analyses of spectra of cis,cis-mucononitrile exemplifies the utility of the MTAI nematic phase in the determination of structural parameters of the solute.
Resumo:
In our earlier study, we have observed that hypokalemia in langur monkeys, following gossypol acetic acid (GAA) treatment (5 mg dose level) when used as an antispermatogenic agent, and potassium salt supplementation partially maintained body potassium level of the animals. The aims of the present investigation was to confirm further occurrence of hypokalemia in the monkey (comparatively at two higher dose levels) and the role of potassium salt in preventing occurrence of gossypol-induced hypokalemia. Highly purified gossypol acetic acid alone at two dose levels (7.5 and 10 mg/animal/day; oral) and in combination with potassium chloride (0.50 and 0.75 mg/animal/day; oral) was given for 180 days. Treatment with gossypol alone as well as with the supplementation of potassium salt resulted in severe oligospermia and azoospermia. Animals receiving gossypol alone showed significant potassium deficiency with signs of fatigue at both dose levels. Enhanced potassium loss through urine was found in potassium-deficient animals, whereas animals receiving gossypol acetic acid plus potassium salt showed normal serum potassium with a less significant increase in urine potassium level during treatment phases. Other parameters of the body remained within normal range except gradual and significant elevation in serum transaminases activity. The animals gradually returned to normalcy following 150 and 180 days of termination of the treatment.
Resumo:
Na+.C6HI209 P-, Mr=282.1, monoclinic, e2~, a=5-762(1), b=7.163(2), c=12.313(1)A, fl= 99.97 (1) °, U= 500.5 A 3, Z= 2, D m = 1.86, D x = 1.87 Mg m -s, Cu Ka, 2 = 1.5418 A, /a = 3-3 mm -1, F(000) = 292, T= 300 K, final R for 922 observed reflections is 0-042. The phosphate ester bond, P-O(6), is 1.575 (5)A, slightly shorter than the P~O bond in monopotassium phosphoenolpyruvate [1.612 (6) A] [Hosur & Viswamitra (1981). Acta Cryst. B37, 839-843]. The pyranose sugar ring takes a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-trans. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5) = 1.435 (8) and C(1)-O(5) = 1.436 (9) A. The sodium ion has seven near neighbours within a distance of 2.9 A. The crystal structure is stabilized by hydrogen bonds between the O atoms of symmetryrelated molecules.
Resumo:
Stephen Setter, Melissa Setter, Michael Graham and Joe Vitelli recently published their paper 'Buoyancy and germination of pond apple (Annona glabra L.) propagules in fresh and salt water' in Proceedings of the 16th Australian Weeds Conference. Stephen also presented this paper at the conference. Pond apple is an aggressive woody weed which has invaded many wetlands, drainage lines and riparian systems across the Wet Tropics bioregion of Far North Queensland. Most fruit and seed produced by pond apple during the summer wet season fall directly into creeks, river banks, flood plains and swamps from where they are dispersed. They reported that pond apple seeds can float for up to 12 months in either fresh or salt water, with approximately 38% of these seeds germinating in a soil medium once removed from the experimental water tanks at South Johnstone. Their study suggested that the removal of reproductive trees from areas adjacent to creeks and rivers will have an immediate impact on potential spread of pond apple by limiting seed input into flowing water bodies.
Resumo:
This work, a small single room installation, was my contribution to the 2015 Palimpsest Biennale in Mildura, and was shown at the ADFA building in the town's centre. On an initial research trip in July, 2015, I stopped at a dried out salt lake near Wentworth. Beach-like, the lake left a tidal line along a curving shore. The vegetation looked like ocean flora; there was the glimmering saltiness of everything, and saltbush everywhere. It brought to mind Sturt's hankering for an inland sea, and his wishful voyage along the Murray, that led him out, not in. This work puts these observations together: a drawing, made from the sanded emboss of saltbush leaves, runs, riverlike, across the space. A looped film of clouds reflected in a shallow saltlake, recalls the dream of an inland sea, supported by the sound of ocean.
Resumo:
In February 2004, Redland Shire Council with help from a Horticulture Australia research project was able to establish a stable grass cover of seashore paspalum (Paspalum vaginatum) on a Birkdale park where the soil had previously proved too salty to grow anything else. Following on from their success with this small 0.2 ha demonstration area, Redland Shire has since invested hundreds of thousands of dollars in successfully turfing other similarly “impossible” park areas with seashore paspalum. Urban salinity can arise for different reasons in different places. In inland areas such as southern NSW and the WA wheatbelt, the usual cause is rising groundwater bringing salt to the surface. In coastal sites, salt spray or periodic tidal inundation can result in problems. In Redland Shire’s case, the issue was compacted marine sediments (mainly mud) dug up and dumped to create foreshore parkland in the course of artificial canal developments. At Birkdale, this had created a site that was both strongly acid and too salty for most plants. Bare saline scalds were interspersed by areas of unthrifty grass. Finding a salt tolerant grass is no “silver bullet” or easy solution to salinity problems. Rather, it buys time to implement sustainable long-term establishment and maintenance practices, which are even more critical than with conventional turfgrasses. These practices include annual slicing or coring in conjunction with gypsum/dolomite amendment and light topdressing with sandy loam soil (to about 1 cm depth), adequate maintenance fertiliser, weed control measures, regular leaching irrigation was applied to flush salts below the root zone, and irrigation scheduling to maximise infiltration and minimise run off. Three other halophytic turfgrass species were also identified, each of them adapted to different environments, management regimes and uses. These have been shortlisted for larger-scale plantings in future work.
Resumo:
Mr= 367.2, monoclinic, C2, a = 8.429 (1),b= 10.184(2), c= 16.570(2)A, /~= 99.18 (1) °, U= 1404.2 A 3, z = 4, D m = 1.73, D x = 1.74 Mg m -3,Cu K~, 2 = 1.5418 A, g = 2.99 mm -1, F(000) = 764,T= 300K, final R for 1524 observed reflections is0.069. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5)= 1.445 (10) and C(1)-O(5)= 1.424(10). The pyranose sugar ring adopts a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of the dipotassium salt of glucose 1-phosphate. The phosphate ester bond, P-O(1), is 1.641 (6)A, slightly longer than the 'high-energy' P-,.O bond in the monopotassium salt of phosphoenolpyruvate [1.612 (6)A]. Two sodium ions are six coordinated while the third has only five neighbours.
Resumo:
Abstract is not available.
Resumo:
The biological function of nitric oxide and its oxidized forms has received a great deal of attention over the past two decades. However much less attention has been focused on the reduced nitric oxide, nitroxyl (HNO). Unlike NO, HNO is highly reactive species and thus it needs to be generated by using donor compounds under experimental conditions. Currently there is only one donor available, Angeli s salt, which releases HNO in a controlled fashion under pysiological conditions. Prior studies have shown the pro-oxidative and cytotoxic potential of Angeli s salt compared to NO donors. The high reactivity of HNO with cysteine thiols is considered to form the biochemical basis for its unique properties compared to other nitrogen oxides. Such thiol modification cold result in disturbances of vital cellular functions and subsequently to death of disturbance sensitive cells, such as neurons. Therefore modification of proteins and lipids was studied in vitro and the potential neurotoxicity was studied in vivo by local infusion of Angeli s salt into the rat central nervous system. The results show that under aerobic in vitro conditions, HNO can, subsequent to autoxidation, cause irreversible oxidative modification of proteins and lipids. These effects are not however seen in cell culture or following infusion of Angeli s salt directly into the rat central nervous tissue likely due to presence of lower oxygen and higher thiol concentration. However, due to high reactivity with thiols, HNO can cause irreversible inactivation of cysteine modification sensitive enzymes such as cysteine proteases papain in vitro and cathepsin B in cell culture. Furthermore it was shown that infusion of HNO releasing Angeli s salt into the rat central nervous system causes necrotic cell death and motor dysfunction following infusion into the lumbal intrathecal space. In conclusion, the acute neurotoxic potential of Angeli s salt was shown to be relatively low, but still higher compared to NO donors. HNO was shown to affect numerous cellular processes which could result in neurotoxicity if HNO was produced in vivo.
Resumo:
A thorough investigation of salt concentration dependence of lithium DNA fibres is made using X-ray diffraction. While for low salt the C-form pattern is obtained, crystalline B-type diffraction patterns result on increasing the salt concentration. The salt content in the gel (from which fibres are drawn) is estimated by equilibrium dialysis using the Donnan equilibrium principle. The salt range giving the best crystalline B pattern is determined. It is found that in this range meridional reflections occur on the fourth and sixth layer lines. In addition, the tenth layer meridian is absent at a particular salt concentration. These results strongly suggest the presence of non-helical features in the DNA molecule. Preliminary analysis of the diffraction patterns indicates a structural variability within the B-form itself. Further, the possibility of the structural parameters of DNA being similar in solid state and in solution is discussed.
Resumo:
This project built upon the successful outcomes of a previous project (TU02005) by adding to the database of salt tolerance among warm season turfgrass cultivars, through further hydroponic screening trials. Hydroponic screening trials focussed on new cultivars or cultivars that were not possible to cover in the time available under TU02005, including: 11 new cultivars of Paspalum vaginatum; 13 cultivars of Cynodon dactylon; six cultivars of Stenotaphrum secundatum; one accession of Cynodon transvaalensis; 12 Cynodon dactylon x transvaalensis hybrids; two cultivars of Sporobolus virginicus; five cultivars of Zoysia japonica; one cultivar of Z. macrantha, one common form of Z. tenuifolia and one Z. japonica x tenuifolia hybrid. The relative salinity tolerance of different turfgrasses is quantified in terms of their growth response to increasing levels of salinity, often defined by the salt level that equates to a 50% reduction in shoot yield, or alternatively the threshold salinity. The most salt tolerant species in these trials were Sporobolus virginicus and Paspalum vaginatum, consistent with the findings from TU02005 (Loch, Poulter et al. 2006). Cynodon dactylon showed the largest range in threshold values with some cultivars highly sensitive to salt, while others were tolerant to levels approaching that of the more halophytic grasses. Coupled with the observational and anecdotal evidence of high drought tolerance, this species and other intermediately tolerant species provide options for site specific situations in which soil salinity is coupled with additional challenges such as shade and high traffic conditions. By recognising the fact that a salt tolerant grass is not the complete solution to salinity problems, this project has been able to further investigate sustainable long-term establishment and management practices that maximise the ability of the selected grass to survive and grow under a particular set of salinity and usage parameters. Salt-tolerant turf grasses with potential for special use situations were trialled under field conditions at three sites within the Gold Coast City Council, while three sites, established under TU02005 within the Redland City Council boundaries were monitored for continued grass survival. Several randomised block experiments within Gold Coast City were established to compare the health and longevity of seashore paspalum (Paspalum vaginatum), Manila grass (Zoysia matrella), as well as the more tolerant cultivars of other species like buffalo grass (Stenotaphrum secundatum) and green couch (Cynodon dactylon). Whilst scientific results were difficult to achieve in the field situation, where conditions cannot be controlled, these trials provided valuable observational evidence of the likely survival of these species. Alternatives to laying full sod such as sprigging were investigated, and were found to be more appropriate for areas of low traffic as the establishment time is greater. Trials under controlled and protected conditions successfully achieved a full cover of Paspalum vaginatum from sprigs in a 10 week time frame. Salt affected sites are often associated with poor soil structure. Part of the research investigated techniques for the alleviation of soil compaction frequently found on saline sites. Various methods of soil de-compaction were investigated on highly compacted heavy clay soil in Redlands City. It was found that the heavy duplex soil of marine clay sediments required the most aggressive of treatments in order to achieve limited short-term effects. Interestingly, a well constructed sports field showed a far greater and longer term response to de-compaction operations, highlighting the importance of appropriate construction in the successful establishment and management of turfgrasses on salt affected sites. Fertiliser trials in this project determined plant demand for nitrogen (N) to species level. This work produced data that can be used as a guide when fertilising, in order to produce optimal growth and quality in the major turf grass species used in public parkland. An experiment commenced during TU02005 and monitored further in this project, investigated six representative warm-season turfgrasses to determine the optimum maintenance requirements for fertiliser N in south-east Queensland. In doing so, we recognised that optimum level is also related to use and intensity of use, with high profile well-used parks requiring higher maintenance N than low profile parks where maintaining botanical composition at a lower level of turf quality might be acceptable. Kikuyu (Pennisetum clandestinum) seemed to require the greatest N input (300-400 kg N/ha/year), followed by the green couch (Cynodon dactylon) cultivars ‘Wintergreen’ and ‘FLoraTeX’ requiring approximately 300 kg N/ha/year for optimal condition and growth. ‘Sir Walter’ (Stenotaphrum secundatum) and ‘Sea Isle 1’ (Paspalum vaginatum) had a moderate requirement of approximately 200 kg/ha/year. ‘Aussiblue’ (Digitaria didactyla)maintained optimal growth and quality at 100-200 kg N/ha/year. A set of guidelines has been prepared to provide various options from the construction and establishment of new grounds, through to the remediation of existing parklands by supporting the growth of endemic grasses. They describe a best management process through which salt affected sites should be assessed, remediated and managed. These guidelines, or Best Management Practices, will be readily available to councils. Previously, some high salinity sites have been turfed several times over a number of years (and Council budgets) for a 100% failure record. By eliminating this budgetary waste through targeted workable solutions, local authorities will be more amenable to investing appropriate amounts into these areas. In some cases, this will lead to cost savings as well as resulting in better quality turf. In all cases, however, improved turf quality will be of benefit to ratepayers, directly through increased local use of open space in parks and sportsfields and indirectly by attracting tourists and other visitors to the region bringing associated economic benefits. At the same time, environmental degradation and erosion of soil in bare areas will be greatly reduced.