962 resultados para Saline water barriers
Resumo:
Mode of access: Internet.
Resumo:
"September 1986."
Resumo:
Desalination of groundwater is essential in arid regions that are remote from both seawater and freshwater resources. Desirable features of a groundwater desalination system include a high recovery ratio, operation from a sustainable energy source such as solar, and high water output per unit of energy and land. Here we propose a new system that uses a solar-Rankine cycle to drive reverse osmosis (RO). The working fluid such as steam is expanded against a power piston that actuates a pump piston which in turn pressurises the saline water thus passing it through RO membranes. A reciprocating crank mechanism is used to equalise the forces between the two pistons. The choice of batch mode in preference to continuous flow permits maximum energy recovery and minimal concentration polarisation in the vicinity of the RO membrane. This study analyses the sizing and efficiency of the crank mechanism, quantifies energy losses in the RO separation and predicts the overall performance. For example, a system using a field of linear Fresnel collectors occupying 1000 m2 of land and raising steam at 200 °C and 15.5 bar could desalinate 350 m3/day from saline water containing 5000 ppm of sodium chloride with a recovery ratio of 0.7.
Resumo:
In this report, the results of a 2000-2001 radiogeoecological investigation are presented for the region of the Ob and Yenisei estuaries and the adjacent Kara Sea. In order to study the behaviour and migration of Cs, Sr and Pu radionuclides in a river - sea system experimental research on the distribution of these radionuclides in the water column and surface sediments has been carried out. In addition, the role of suspended and dissolved organic matter on the behaviour of radionuclides in water solutions has been studied. The 137Cs and 239,240Pu concentrations in the upper 0-2cm layer of the sediments varied between 1,4 and 50,0 Bq/kg, with a mean of 12,4 Bq/kg, and between 0,065-1,96 Bq/kg, with a mean of 0,62 Bq/kg, respectively. There is a direct relationship of a specific radioactivity of 137Cs and 239,240Pu in the sediments and the content of clay fraction. The 137Cs, 90Sr and 239,240Pu concentrations in the water samples varied between 0,4 and 7,0 Bq/m**3 (mean of 3,6 Bq/m**3), 0,4 and 9,7 Bq/m**3 (mean of 3,3 Bq/m**3), and 0,01-0,3 Bq/m**3 (mean of 0,02 Bq/m**3), respectively. In the water samples the concentration of the water-soluble species l37Cs increases with increasing salinity, whereas the concentration of the 90Sr-radionuclide decreases with increasing salinity. This may be related to the physico-chemical behaviour of these radionuclides in water solutions and the influence of several sources on radioactive pollution in this basin. In sea water the suspended matter may absorb up to 10% 137Cs, 90Sr and 239,240Pu, in river water samples these values may reach 15-30%. More than 50% 90Sr and 239,240Pu is able to form complexes with dissolved organic matter. This effect is smaller in saline water. The comparison of the data of 137Cs radioactivity in the surface sediments in 1995 and 2000-2001 showed that the level of radioactivity has decreased.
Resumo:
Rural communities across Australia are increasingly being asked to shoulder the environmental and social impacts of intensive mining and gas projects. Escalating demand for coal seam gas (CSG) is raising significant environmental justice issues for rural communities. Chief amongst environmental concerns are risks of contamination or depletion of vital underground aquifers as well as treatment and disposal of high-saline water close to high quality agricultural soils. Associated infrastructure such as pipelines, electricity lines, gas processing and port facilities can also adversely affect communities and ecosystems great distances from where the gas is originally extracted. Whilst community submission (and appeal) rights do exist, accessing expert independent information is challenging, legal terminology is complex and submission periods are short, leading ultimately to a lack of procedural justice for landholders and their communities. Since August 2012, Queensland University of Technology (QUT) has worked in partnership with not-for-profit legal centre - Queensland’s Environmental Defenders Office (EDO) - to help better educate communities about mining and CSG assessment processes. The project, now entering its third semester, aims to empower communities to access relevant information and actively engage in legal processes on their own behalf. Students involved in the project so far have helped to research chapters of a comprehensive community guide to mining and CSG law as well as organising multidisciplinary community forums and preparing information on land access and compensation rights for landholders. While environmental justice issues still exist without significant law reform, the project has led to greater awareness amongst the community of the laws relating the CSG. At the same time, it has led to a greater understanding by students and academics of real life environmental justice issues currently faced by rural communities.
Resumo:
The striped catfish (Pangasianodon hypophthalmus) culture industry in the Mekong Delta in Vietnam has developed rapidly over the past decade. The culture industry now however, faces some significant challenges, especially related to climate change impacts notably from predicted extensive saltwater intrusion into many low topographical coastal provinces across the Mekong Delta. This problem highlights a need for development of culture stocks that can tolerate more saline culture environments as a response to expansion of saline water-intruded land. While a traditional artificial selection program can potentially address this need, understanding the genomic basis of salinity tolerance can assist development of more productive culture lines. The current study applied a transcriptomic approach using Ion PGM technology to generate expressed sequence tag (EST) resources from the intestine and swim bladder from striped catfish reared at a salinity level of 9 ppt which showed best growth performance. Total sequence data generated was 467.8 Mbp, consisting of 4,116,424 reads with an average length of 112 bp. De novo assembly was employed that generated 51,188 contigs, and allowed identification of 16,116 putative genes based on the GenBank non-redundant database. GO annotation, KEGG pathway mapping, and functional annotation of the EST sequences recovered with a wide diversity of biological functions and processes. In addition, more than 11,600 simple sequence repeats were also detected. This is the first comprehensive analysis of a striped catfish transcriptome, and provides a valuable genomic resource for future selective breeding programs and functional or evolutionary studies of genes that influence salinity tolerance in this important culture species.
Resumo:
Sediments cored along the southwestern Iberian margin during Integrated Ocean Drilling Program Expedition 339 provide constraints on Mediterranean Outflow Water (MOW) circulation patterns from the Pliocene epoch to the present day. After the Strait of Gibraltar opened (5.33 million years ago), a limited volume of MOW entered the Atlantic. Depositional hiatuses indicate erosion by bottom currents related to higher volumes of MOW circulating into the North Atlantic, beginning in the late Pliocene. The hiatuses coincide with regional tectonic events and changes in global thermohaline circulation (THC). This suggests that MOW influenced Atlantic Meridional Overturning Circulation (AMOC), THC, and climatic shifts by contributing a component of warm, saline water to northern latitudes while in turn being influenced by plate tectonics.
Resumo:
Desalination is considered one of the most suitable areas for the utilization of solar energy, as there are many places in the world where abundant supply of solar energy is available and also there is a great demand for fresh water. An integrated solar heat pump desalination system has been developed at the National University of Singapore. The system also offers the opportunity of water heating and drying utilizing solar, ambient energy and waste heat from air conditioning system, which is conventionally dumped into the environment causing global warming. Desalination is carried out by making use of a single effect of Multi-Effect Distillation (MED) system. Within the desalination chamber, both fl ashing and evaporation of saline water take place. The maximum Coefficient of Performance (COP) of the heat pump system was around 5.8. In the integrated system, the maximum fresh water production rate was 9.6 l h−1 and a Performance Ratio (PR) of 1.2. For only desalination, the system has the potential to produce a maximum of 30 l h−1 of fresh water.
Resumo:
The aim of this project was to quantify differences between treated and untreated coir (coconut industrial residues) products and to identify differences in growth, yield and quality of cut flowers grown in different coir products. This has been brought about largely by the concern that some coir products, washed in low quality (saline) water may have detrimental effects on plant productivity and quality. There is concern in the flower production industry and among media suppliers, that lower quality products are favoured due to price alone, which as this project shows is a false economy. Specifically the project examined: • Differences in physical and chemical properties of treated and untreated coir along with another commonly used growing media in the flower industy; • Potential improvements in yield and quality of Gerbera (Gerbera jamesonii); • Potential differences in vase life of Gerbera as a result of the different growing media; and • Cost-benefit implications of treated (more expensive) coir substrate products versus untreated (less expensive) coir including any subsequent differences in yield and quality. By first examining the physical and some chemical properties of different coir substrates and other industry standard media, the researchers have been able to validate the concerns raised about the potential quality issues in coir based growing media. There was a great deal of variation in both the electrical conductivity and sodium contents. Physical properties were also variable as expected since manufacturers are able to target the specific physical preferences of plants through manipulation of the particle size distribution. A field trial was conducted under protected cropping practices in which three growing media were compared in terms of total productivity and also flower quality parameters such as stem length, flower diameter and vase life. The trial was a completely randomised design with the three growing media comprising treated coir discs, untreated coir discs and a pine bark coir mix. Four cultivars of Gerbera were assessed: Balance®; Carambole®; Dune® and Picobello®, all new products from Florist de Kwakel B.V., Denmark. Initial expansion from tissue culture was conducted at the Highsun Express Facility, Ormiston, Queensland. The trial included 12 replications of each cultivar in each media (a total of 144 plants) to ensure all data collected, and the derived conclusions were statistically rigorous. The coir supplied with no pre-treatment or buffering produced significantly less flowers than those grown in a pine bark coir mix or the pre-treated coir. Interestingly, the pine bark coir mix produced a greater number of flowers. However, the flowers produced in the pine bark coir mix were generally a shorter length stem. Productivity data, combined with flower quality data and component costs were all analysed through a cost/benefit economic model which showed that the greater revenue from better stem length outweighed the stem numbers, giving a cost benefit ratio of 2.58 for treated coir, 2.49 for untreated coir and 2.52 for pine bark coir mix. While this does not seem a large difference, when considering the number of plants a producer maintains can be upwards of 50,000 the difference in revenue would be, at a minimum $60,000 in this example. In conclusion, this project has found that there are significant effects on plant health, growth, yield and quality between those grown in treated and untreated coir. The outcome being growers can confidently invest in more expensive treated products with the assurance that benefits will outweigh initial cost. It is false economy to favour untreated coir products based on price alone. Producers should ensure they fully understand the production processes when purchasing growing media. Rather than targeting lower priced materials, it is recommended that quality be the highest priority in making this management decision. In making recommendations for future research and development it was important to consider conclusions from other researchers as well as those of the current project. It has been suggested that the media has greater longevity, which although not captured in this study could also lead to further cost efficiencies. Assessment of the products over a longer time period, and using a wider range of plant species are the major recommendations for further research to ensure greater understanding as to the importance in choosing the right growing media to meet specific needs.
Resumo:
Earth s ice shelves are mainly located in Antarctica. They cover about 44% of the Antarctic coastline and are a salient feature of the continent. Antarctic ice shelf melting (AISM) removes heat from and inputs freshwater into the adjacent Southern Ocean. Although playing an important role in the global climate, AISM is one of the most important components currently absent in the IPCC climate model. In this study, AISM is introduced into a global sea ice-ocean climate model ORCA2-LIM, following the approach of Beckmann and Goosse (2003; BG03) for the thermodynamic interaction between the ice shelf and ocean. This forms the model ORCA2-LIM-ISP (ISP: ice shelf parameterization), in which not only all the major Antarctic ice shelves but also a number of minor ice shelves are included. Using these two models, ORCA2-LIM and ORCA2-LIM-ISP, the impact of addition of AISM and increasing AISM have been investigated. Using the ORCA2-LIM model, numerical experiments are performed to investigate the sensitivity of the polar sea ice cover and the Antarctic Circumpolar Current (ACC) transport through Drake Passage (DP) to the variations of three sea ice parameters, namely the thickness of newly formed ice in leads (h0), the compressive strength of ice (P*), and the turning angle in the oceanic boundary layer beneath sea ice (θ). It is found that the magnitudes of h0 and P* have little impact on the seasonal sea ice extent, but lead to large changes in the seasonal sea ice volume. The variation in turning angle has little impact on the sea ice extent and volume in the Arctic but tends to reduce them in the Antarctica when ignored. The magnitude of P* has the least impact on the DP transport, while the other two parameters have much larger influences. Numerical results from ORCA2-LIM and ORCA2-LIM-ISP are analyzed to investigate how the inclusion of AISM affects the representation of the Southern Ocean hydrography. Comparisons with data from the World Ocean Circulation Experiment (WOCE) show that the addition of AISM significantly improves the simulated hydrography. It not only warms and freshens the originally too cold and too saline bottom water (AABW), but also warms and enriches the salinity of the originally too cold and too fresh warm deep water (WDW). Addition of AISM also improves the simulated stratification. The close agreement between the simulation with AISM and the observations suggests that the applied parameterization is an adequate way to include the effect of AISM in a global sea ice-ocean climate model. We also investigate the models capability to represent the sea ice-ocean system in the North Atlantic Ocean and the Arctic regions. Our study shows both models (with and without AISM) can successfully reproduce the main features of the sea ice-ocean system. However, both tend to overestimate the ice flux through the Nares Strait, produce a lower temperature and salinity in the Hudson Bay, Baffin Bay and Davis Strait, and miss the deep convection in the Labrador Sea. These deficiencies are mainly attributed to the artificial enlargement of the Nares Strait in the model. In this study, the impact of increasing AISM on the global sea ice-ocean system is thoroughly investigated. This provides a first idea regarding changes induced by increasing AISM. It is shown that the impact of increasing AISM is global and most significant in the Southern Ocean. There, increasing AISM tends to freshen the surface water, to warm the intermediate and deep waters, and to freshen and warm the bottom water. In addition, increasing AISM also leads to changes in the mixed layer depths (MLD) in the deep convection sites in the Southern Ocean, deepening in the Antarctic continental shelf while shoaling in the ACC region. Furthermore, increasing AISM influences the current system in the Southern Ocean. It tends to weaken the ACC, and strengthen the Antarctic coastal current (ACoC) as well as the Weddell Gyre and the Ross Gyre. In addition to the ocean system, increasing AISM also has a notable impact on the Antarctic sea ice cover. Due to the cooling of seawater, sea ice concentration and thickness generally become higher. In austral winter, noticeable increases in sea ice concentration mainly take place near the ice edge. In regards with sea ice thickness, large increases are mainly found along the coast of the Weddell Sea, the Bellingshausen and Amundsen Seas, and the Ross Sea. The overall thickening of sea ice leads to a larger volume of sea ice in Antarctica. In the North Atlantic, increasing AISM leads to remarkable changes in temperature, salinity and density. The water generally becomes warmer, more saline and denser. The most significant warming occurs in the subsurface layer. In contrast, the maximum salinity increase is found at the surface. In addition, the MLD becomes larger along the Greenland-Scotland-Iceland ridge. Global teleconnections due to AISM are studied. The AISM signal is transported with the surface current: the additional freshwater from AISM tends to enhance the northward spreading of the surface water. As a result, more warm and saline water is transported from the tropical region to the North Atlantic Ocean, resulting in warming and salt enrichment there. It would take about 30 40 years to establish a systematic noticeable change in temperature, salinity and MLD in the North Atlantic Ocean according to this study. The changes in hydrography due to increasing AISM are compared with observations. Consistency suggests that increasing AISM is highly likely a major contributor to the recent observed changes in the Southern Ocean. In addition, the AISM might contribute to the salinity contrast between the North Atlantic and North Pacific, which is important for the global thermohaline circulation.
Resumo:
A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@ AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.
Resumo:
This article is aimed to delineate groundwater sources in Holocene deposits area in the Gulf of Mannar Coast from Southern India. For this purpose 2-D electrical resistivity tomography (ERT), hydrochemical and granulomerical studies were carried out and integrated to identify hydrogeological structures and portable groundwater resource in shallow depths which in general appears in the coastal tracts. The 2-D ERT was used to determine the two-dimensional subsurface geological formations by multicore cable with Wenner array. Low resistivity of 1-5 Omega m for saline water appeared due to calcite at the depth of about 5 m below the ground level (bgl). Sea water intrusion was observed around the maximum resistivity as 5 Omega m at the 8 m depth, bgl in the calcite environs, but the calcareous sandstone layer shows around 15-64 Omega m at the 6 m depth, bgl. The hydrochemical variation of TDS, HCO3-, Cl-, Na+, K+, Ca2+, and Mg2+ concentrations was observed for the saline and sea water intrusion in the groundwater system. The granulometic analysis shows that the study area was under the sea between 5400 and 3000 year ago. The events of ice melting an unnatural ice-stone rain/hail among 5000-4000 years ago resulted in the inundation of sea over the area and deposits of late Holocene marine transgression formation up to Puthukottai quartzite region for a stretch of around 17 km.
Resumo:
Experimental stocking density of Macrobrachium rosenbergii in larval rearing was conducted in A.G. Aqua Hatchery, Chakaria, Bangladesh to study the effect of different stocking densities on growth, survival rate and diseases stress under hatchery condition. The research work was conducted using six cemented rectangular tanks having 3m3 capacity (1.5mX2mX1m) each. Stocking density were maintained in three experimental setup as 200, 150 and 100ind/L of the T1, T2 and T3 respectively with one replicate each. The larvae were fed with Artemia nauplii, Custard, Maxima and brine shrimp flakes. Water quality was maintained by exchanging 20-30% (12ppt saline water) daily. During the study period, temperature, pH, DO, salinity, nitrite-nitrogen, ammonia and alkalinity were maintained from 28.5-31.5ºC, 7.5-7.8, 5.8-5.9mg/L, 12-13ppt, 0.14-0.2 mg/L, 0.22-0.3mg/L, and 140-160mg/L respectively. The growth rates of larvae at 11th stage were recorded in terms of body length 0.115, 0.136, and 0.169 mm/day whereas body weight were observed 0.000115, 0.000180, and 0.000240g/day. The survival rate of larvae were found 21.8%, 30.4% and 51.3% in treatments T1, T2 and T3 respectively. PL was obtained as 43, 45, and 51PL/L and days required of 41, 38 and 34 days in stocking density of 200, 150, and 100ind/L respectively. It was found that the minimum of 34 days was required to attain the PL (12th stage) using the stocking density of 100 individuals/L. Cannibalism, Zoothamnium, Exuvia Entrapment Disease (EED), and Bacterial Necrosis (BN) were found to be the threat to the commercial hatchery operation that might responsible for potential larval damages which can be reduced by lowering the stocking densities in larval rearing tank that also increased the survival and growth rate.
Resumo:
Nine different categories of stakeholders in shrimp farming industry ·were assessed to show the socioeconomic impact of shrimp farming in south-west Bangladesh. Among all the stakeholders the shrimp farmer's average own land was 4 ha whereas the seed collectors and faria's had lowest amount of average land, 0.1 and 0.5 ha respectively. The shrimp farming positively impacted to the livelihood of stakeholders. Income of the coastal people, sanitation, working facilities of women, employment, health condition and the literacy rate increased due to shrimp farming. On the other hand shrimp farming had negative impact on the rice production, livestock, drinking water supply, and social conflict and violence had increased due to shrimp farming. There were internal conflicts between different stakeholders; the farias conflict with the depot owners and shrimp farmers, marginal farmers' conflict with the rich shrimp farmers about leasing lands and saline water control, the rice farmers conflicts with the shrimp farmers about agricultural crop production.
Resumo:
Although long chain alkenones (LCKs) occur widely in lacustrine sediments, their origin is not clear. Here, we report a lacustrine source, the non-calcifying species Chrysotila lamellosa Anand (Haptophyceae), collected and isolated from an inland saline water body, Lake Xiarinur (Inner Mongolia, China). Its alketione pattern is similar to those of coastal marine strains of C lamellosa,but the relationship between U-37(K') index and culture temperature for the lacustrine species is quite different from that of the coastal species. A significant feature of the alkenones in this strain of C lamellosa is a lack of C-38 methyl alkenones, which might be used to distinguish the species from the marine haptophyte species Emiliania huxleyi and Gephyrocapsa oceanica. The higher C-38 tetraunsaturated compound abundance might be another important feature for distinguishing the C lamellosa alkenone producer from the coastal species Isochrysis galbana. This alkenone distribution pattern has been detected in many lakes, which suggests that C lamellosa or a closely related species might be a very common alkenone precursor in lacustrine systems. We examined U-37(K') and U-37(K) values for C lamellosa as a function of culture temperature in a batch culture experiment. The calibration for U-37(K') vs. culture temperature (T) was U-37(K') = 0.0011 x T-2 - 0.0157 x T + 0.1057(n = 14, r(2) = 0.99) from 10 degrees C to 22 degrees C or U-37(K') = 0.0257 x T - 0.2608(n = 9, r(2) = 0.97) from 14 degrees C to 22 degrees C. U-37(K) vs. culture temperature was U-37(K) = 0 0377 x T - 0.5992(n = 14, r(2) = 0.98) from 10 degrees C to 22 degrees C. Our experiments show that the alkenone unsaturation index (U-37(K')) is strongly controlled by culture temperature and can be used for palaeoclimate reconstruction. (C) 2007 Elsevier Ltd. All rights reserved.