892 resultados para SYNDROME GROUP-B
Resumo:
Objective. Although complete blood count (CBC) changes occur with the development of clinical sepsis in newborns, the CBC has not been reported to be a sensitive predictor of sepsis in asymptomatic full-term newborn infants, nor has it been reported to be related to risk factors for sepsis or clinical decisions. The objective of this study was to evaluate the relationship between the WBC/I:T (immature:total neutrophil) ratio and maternal group B streptococcal (GBS) risk factors (rupture of membranes ≥18 hours, maternal temperature ≥100.4°F, maternal age ≤20 years, previous infant with invasive GBS disease, maternal GBS bacteriuria, and black ethnicity); and to evaluate the relationship between the WBC/I:T ratios and providers' clinical decisions (observe versus repeat the CBC or complete sepsis evaluation) in the asymptomatic full-term newborn at risk for early-onset GBS sepsis. ^ Methods. Medical records of infants admitted to the well baby nursery at a tertiary care teaching hospital in Houston, TX between 1/1/99 and 12/31/00 whose gestational ages were ≥35 weeks; who had mothers with GBS positive or unknown culture status and inadequate intrapartum antibiotic prophylaxis; and who had screening CBCs performed in the first 30 hours of life because of GBS risk were reviewed (n = 412). Demographic information, maternal GBS risk factors, CBC results, clinical decisions, and rationales for clinical decisions were collected. ^ Results. With the exception of black ethnicity (p = .0000, odds ratio = 0.213), no statistically significant differences in risk factors between infants with normal and abnormal WBC counts or normal and abnormal I:T ratios were found. Infants with abnormal WBCs had a significantly higher likelihood of having a CBC repeated (p = 0.002 for WBC). Providers documented the CBC result in the rationale for clinical decisions in 62% of the cases. ^ Conclusion. The CBC results were not related to maternal risk factors for GBS except for ethnicity. Black infants had significantly lower WBC levels than infants of other ethnicities, although this difference was clinically insignificant. Infants with abnormal WBCs had a significantly higher likelihood of undergoing repeat CBCs but not sepsis evaluations. Provider rationale was difficult to evaluate due to insufficient documentation. The screening CBC result did not impact the clinicians' decisions to initiate sepsis evaluations in this population. ^
Resumo:
Group B Streptococcus (GBS) is a leading cause of life-threatening infection in neonates and young infants, pregnant women, and non-pregnant adults with underlying medical conditions. Immunization has theoretical potential to prevent significant morbidity and mortality from GBS disease. Alpha C protein (α C), found in 70% of non-type III capsule polysaccharide group B Streptococcus, elicits antibodies protective against α C-expressing strains in experimental animals and is an appealing carrier for a GBS conjugate vaccine. We determined whether natural exposure to α C elicits antibodies in women and if high maternal α C-specific serum antibody at delivery is associated with protection against neonatal disease. An ELISA was designed to measure α C-specific IgM and IgG in human sera. A case-control design (1:3 ratio) was used to match α C-expressing GBS colonized and non-colonized women by age and compare quantified serum α C-specific IgM and IgG. Sera also were analyzed from bacteremic neonates and their mothers and from women with invasive GBS disease. Antibody concentrations were compared using t-tests on log-transformed data. Geometric mean concentrations of α C-specific IgM and IgG were similar in sera from 58 α C strain colonized and 174 age-matched non-colonized women (IgG 245 and 313 ng/ml; IgM 257 and 229 ng/ml, respectively). Delivery sera from mothers of 42 neonates with GBS α C sepsis had similar concentrations of α C-specific IgM (245 ng/ml) and IgG (371 ng/ml), but acute sera from 13 women with invasive α C-expressing GBS infection had significantly higher concentrations (IgM 383 and IgG 476 ng/ml [p=0.036 and 0.038, respectively]). Convalescent sera from 5 of these women 16-49 days later had high α C-specific IgM and IgG concentrations (1355 and 4173 ng/ml, respectively). In vitro killing of α C-expressing GBS correlated with total α C-specific antibody concentration. Invasive disease but not colonization elicits α C-specific IgM and IgG in adults. Whether α C-specific IgG induced by vaccine would protect against disease in neonates merits further investigation. ^
Resumo:
The α C protein of group B Streptococcus (GBS) is a major surface-associated antigen. Although its role in the biology and virulence of GBS has not been defined, it is opsonic and capable of eliciting protective immunity. The α C protein is widely distributed among clinical isolates and is a potential protein carrier and antigen in conjugate vaccines to prevent GBS infections. The structural gene for the α C protein, bca, has been cloned and sequenced. The protein encoded by bca is related to a class of surface-associated proteins of Gram-positive cocci involved in virulence and immunity. To investigate the potential roles of the α C protein, bca null mutants were generated in which the bca gene was replaced with a kanamycin resistance cassette via homologous recombination using a novel shuttle/suicide vector. Studies of lethality in neonatal mice showed that the virulence of the bca null mutants was attenuated 5- to 7-fold when compared with the isogenic wild-type strain A909. Significant differences in mortality occurred in the first 24 h, suggesting that the role of the α antigen is important in the initial stages of the infection. In contrast to A909, bca mutants were no longer killed by polymorphonuclear leukocytes in the presence of α-specific antibodies in an in vitro opsonophagocytic assay. In contrast to previous studies, α antigen expression does not appear to play a role in resistance to opsonophagocytosis in the absence of α-specific antibodies. In addition, antibodies to the α C protein did not passively protect neonatal mice from lethal challenge with bca mutants, suggesting that these epitopes are uniquely present within the α antigen as expressed from the bca gene. Therefore, the α C protein is important in the pathogenesis of GBS infection and is a target for protective immunity in the development of GBS vaccines.
Resumo:
The Sanfilippo syndrome type B is an autosomal recessive disorder caused by mutation in the gene (NAGLU) encoding α-N-acetylglucosaminidase, a lysosomal enzyme required for the stepwise degradation of heparan sulfate. The most serious manifestations are profound mental retardation, intractable behavior problems, and death in the second decade. To generate a model for studies of pathophysiology and of potential therapy, we disrupted exon 6 of Naglu, the homologous mouse gene. Naglu−/− mice were healthy and fertile while young and could survive for 8–12 mo. They were totally deficient in α-N-acetylglucosaminidase and had massive accumulation of heparan sulfate in liver and kidney as well as secondary changes in activity of several other lysosomal enzymes in liver and brain and elevation of gangliosides GM2 and GM3 in brain. Vacuolation was seen in many cells, including macrophages, epithelial cells, and neurons, and became more prominent with age. Although most vacuoles contained finely granular material characteristic of glycosaminoglycan accumulation, large pleiomorphic inclusions were seen in some neurons and pericytes in the brain. Abnormal hypoactive behavior was manifested by 4.5-mo-old Naglu−/− mice in an open field test; the hyperactivity that is characteristic of affected children was not observed even in younger mice. In a Pavlovian fear conditioning test, the 4.5-mo-old mutant mice showed normal response to context, indicating intact hippocampal-dependent learning, but reduced response to a conditioning tone, perhaps attributable to hearing impairment. The phenotype of the α-N-acetylglucosaminidase-deficient mice is sufficiently similar to that of patients with the Sanfilippo syndrome type B to make these mice a good model for study of pathophysiology and for development of therapy.
Resumo:
The Sanfilippo syndrome type B is a lysosomal storage disorder caused by deficiency of alpha-N-acetylglucosaminidase; it is characterized by profound mental deterioration in childhood and death in the second decade. For understanding the molecular genetics of the disease and for future development of DNA-based therapy, we have cloned the cDNA and gene encoding alpha-N-acetylglucosaminidase. Cloning started with purification of the bovine enzyme and use of a conserved oligonucleotide sequence to probe a human cDNA library. The cDNA sequence was found to encode a protein of 743 amino acids, with a 20- to 23-aa signal peptide immediately preceding the amino terminus of the tissue enzyme and with six potential N-glycosylation sites. The 8.5-kb gene (NAGLU), interrupted by 5 introns, was localized to the 5'-flanking sequence of a known gene, EDH17B, on chromosome 17q21. Five mutations were identified in cells of patients with Sanfilippo syndrome type B: 503del10, R297X, R626X, R643H, and R674H. The occurrence of a frameshift and a nonsense mutation in homozygous form confirms the identity of the NAGLU gene.
Resumo:
Group B streptococci (GBS) are the most common cause of neonatal sepsis, pneumonia, and meningitis. The alpha C protein is a surface-associated antigen; the gene (bca) for this protein contains a series of tandem repeats (each encoding 82 aa) that are identical at the nucleotide level and express a protective epitope. We previously reported that GBS isolates from two of 14 human maternal and neonatal pairs differed in the number of repeats contained in their alpha C protein; in both pairs, the alpha C protein of the neonatal isolate was smaller in molecular size. We now demonstrate by PCR that the neonatal isolates contain fewer tandem repeats. Maternal isolates were susceptible to opsonophagocytic killing in the presence of alpha C protein-specific antiserum, whereas the discrepant neonatal isolates proliferated. An animal model was developed to further study this phenomenon. Adult mice passively immunized with antiserum to the alpha C protein were challenged with an alpha C protein-expressing strain of GBS. Splenic isolates of GBS from these mice showed a high frequency of mutation in bca--most commonly a decrease in repeat number. Isolates from non-immune mice were not altered. Spontaneous deletions in the repeat region were observed at a much lower frequency (6 x 10(-4)); thus, deletions in that region are selected for under specific antibody pressure and appear to lower the organism's susceptibility to killing by antibody specific to the alpha C protein. This mechanism of antigenic variation may provide a means whereby GBS evade host immunity.
Resumo:
Group B streptococci (GBS) cause sepsis and meningitis in neonates and serious infections in adults with underlying chronic illnesses. Specific antibodies have been shown to be an important factor in protective immunity for neonates, but the role of serum complement is less well defined. To elucidate the function of the complement system in immunity to this pathogen, we have used the approach of gene targeting in embryonic stem cells to generate mice totally deficient in complement component C3. Comparison of C3-deficient mice with mice deficient in complement component C4 demonstrated that the 50% lethal dose for GBS infection was reduced by approximately 50-fold and 25-fold, respectively, compared to control mice. GBS were effectively killed in vitro by human blood leukocytes in the presence of specific antibody and C4-deficient serum but not C3-deficient serum. The defective opsonization by C3-deficient serum in vitro was corroborated by in vivo studies in which passive immunization of pregnant dams with specific antibodies conferred protection from GBS challenge to normal and C4-deficient pups but not C3-deficient pups. These results indicate that the alternative pathway is sufficient to mediate effective opsonophagocytosis and protective immunity to GBS in the presence of specific antibody. In contrast, the increased susceptibility to infection of non-immune mice deficient in either C3 or C4 implies that the classical pathway plays an essential role in host defense against GBS infection in the absence of specific immunity.
Resumo:
OBJECTIVE: To determine the accuracy, acceptability and cost-effectiveness of polymerase chain reaction (PCR) and optical immunoassay (OIA) rapid tests for maternal group B streptococcal (GBS) colonisation at labour. DESIGN: A test accuracy study was used to determine the accuracy of rapid tests for GBS colonisation of women in labour. Acceptability of testing to participants was evaluated through a questionnaire administered after delivery, and acceptability to staff through focus groups. A decision-analytic model was constructed to assess the cost-effectiveness of various screening strategies. SETTING: Two large obstetric units in the UK. PARTICIPANTS: Women booked for delivery at the participating units other than those electing for a Caesarean delivery. INTERVENTIONS: Vaginal and rectal swabs were obtained at the onset of labour and the results of vaginal and rectal PCR and OIA (index) tests were compared with the reference standard of enriched culture of combined vaginal and rectal swabs. MAIN OUTCOME MEASURES: The accuracy of the index tests, the relative accuracies of tests on vaginal and rectal swabs and whether test accuracy varied according to the presence or absence of maternal risk factors. RESULTS: PCR was significantly more accurate than OIA for the detection of maternal GBS colonisation. Combined vaginal or rectal swab index tests were more sensitive than either test considered individually [combined swab sensitivity for PCR 84% (95% CI 79-88%); vaginal swab 58% (52-64%); rectal swab 71% (66-76%)]. The highest sensitivity for PCR came at the cost of lower specificity [combined specificity 87% (95% CI 85-89%); vaginal swab 92% (90-94%); rectal swab 92% (90-93%)]. The sensitivity and specificity of rapid tests varied according to the presence or absence of maternal risk factors, but not consistently. PCR results were determinants of neonatal GBS colonisation, but maternal risk factors were not. Overall levels of acceptability for rapid testing amongst participants were high. Vaginal swabs were more acceptable than rectal swabs. South Asian women were least likely to have participated in the study and were less happy with the sampling procedure and with the prospect of rapid testing as part of routine care. Midwives were generally positive towards rapid testing but had concerns that it might lead to overtreatment and unnecessary interference in births. Modelling analysis revealed that the most cost-effective strategy was to provide routine intravenous antibiotic prophylaxis (IAP) to all women without screening. Removing this strategy, which is unlikely to be acceptable to most women and midwives, resulted in screening, based on a culture test at 35-37 weeks' gestation, with the provision of antibiotics to all women who screened positive being most cost-effective, assuming that all women in premature labour would receive IAP. The results were sensitive to very small increases in costs and changes in other assumptions. Screening using a rapid test was not cost-effective based on its current sensitivity, specificity and cost. CONCLUSIONS: Neither rapid test was sufficiently accurate to recommend it for routine use in clinical practice. IAP directed by screening with enriched culture at 35-37 weeks' gestation is likely to be the most acceptable cost-effective strategy, although it is premature to suggest the implementation of this strategy at present.
Resumo:
Objective: To assess the accuracy and acceptability of polymerase chain reaction (PCR) and optical immunoassay (OIA) tests for the detection of maternal group B streptococcus (GBS) colonisation during labour, comparing their performance with the current UK policy of risk factor-based screening. Design Diagnostic test accuracy study. Setting and population Fourteen hundred women in labour at two large UK maternity units provided vaginal and rectal swabs for testing. Methods The PCR and OIA index tests were compared with the reference standard of selective enriched culture, assessed blind to index tests. Factors influencing neonatal GBS colonisation were assessed using multiple logistic regression, adjusting for antibiotic use. The acceptability of testing to participants was evaluated through a structured questionnaire administered after delivery. Main outcome measures The sensitivity and specificity of PCR, OIA and risk factor-based screening. Results Maternal GBS colonisation was 21% (19-24%) by combined vaginal and rectal swab enriched culture. PCR test of either vaginal or rectal swabs was more sensitive (84% [79-88%] versus 72% [65-77%]) and specific (87% [85-89%] versus 57% [53-60%]) than OIA (P <0.001), and far more sensitive (84 versus 30% [25-35%]) and specific (87 versus 80% [77-82%]) than risk factor-based screening (P <0.001). Maternal antibiotics (odds ratio, 0.22 [0.07-0.62]; P = 0.004) and a positive PCR test (odds ratio, 29.4 [15.8-54.8]; P <0.001) were strongly related to neonatal GBS colonisation, whereas risk factors were not (odds ratio, 1.44 [0.80-2.62]; P = 0.2). Conclusion Intrapartum PCR screening is a more accurate predictor of maternal and neonatal GBS colonisation than is OIA or risk factor-based screening, and is acceptable to women. © RCOG 2010 BJOG An International Journal of Obstetrics and Gynaecology.
Resumo:
PURPOSE: Conventional staging methods are inadequate to identify patients with stage II colon cancer (CC) who are at high risk of recurrence after surgery with curative intent. ColDx is a gene expression, microarray-based assay shown to be independently prognostic for recurrence-free interval (RFI) and overall survival in CC. The objective of this study was to further validate ColDx using formalin-fixed, paraffin-embedded specimens collected as part of the Alliance phase III trial, C9581.
PATIENTS AND METHODS: C9581 evaluated edrecolomab versus observation in patients with stage II CC and reported no survival benefit. Under an initial case-cohort sampling design, a randomly selected subcohort (RS) comprised 514 patients from 901 eligible patients with available tissue. Forty-nine additional patients with recurrence events were included in the analysis. Final analysis comprised 393 patients: 360 RS (58 events) and 33 non-RS events. Risk status was determined for each patient by ColDx. The Self-Prentice method was used to test the association between the resulting ColDx risk score and RFI adjusting for standard prognostic variables.
RESULTS: Fifty-five percent of patients (216 of 393) were classified as high risk. After adjustment for prognostic variables that included mismatch repair (MMR) deficiency, ColDx high-risk patients exhibited significantly worse RFI (multivariable hazard ratio, 2.13; 95% CI, 1.3 to 3.5; P < .01). Age and MMR status were marginally significant. RFI at 5 years for patients classified as high risk was 82% (95% CI, 79% to 85%), compared with 91% (95% CI, 89% to 93%) for patients classified as low risk.
CONCLUSION: ColDx is associated with RFI in the C9581 subsample in the presence of other prognostic factors, including MMR deficiency. ColDx could be incorporated with the traditional clinical markers of risk to refine patient prognosis.
Resumo:
Sub-optimal recovery of bacterial DNA from whole blood samples can limit the sensitivity of molecular assays to detect pathogenic bacteria. We compared 3 different pre-lysis protocols (none, mechanical pre-lysis and achromopeptidasepre-lysis) and 5 commercially available DNA extraction platforms for direct detection of Group B Streptococcus (GBS) in spiked whole blood samples, without enrichment culture. DNA was extracted using the QIAamp Blood Mini kit (Qiagen), UCP Pathogen Mini kit (Qiagen), QuickGene DNA Whole Blood kit S (Fuji), Speed Xtract Nucleic Acid Kit 200 (Qiagen) and MagNA Pure Compact Nucleic Acid Isolation Kit I (Roche Diagnostics Corp). Mechanical pre-lysis increased yields of bacterial genomic DNA by 51.3 fold (95% confidence interval; 31.6–85.1, p < 0.001) and pre-lysis with achromopeptidase by 6.1 fold (95% CI; 4.2–8.9, p < 0.001), compared with no pre-lysis. Differences in yield dueto pre-lysis were 2–3 fold larger than differences in yield between extraction methods. Including a pre-lysis step can improve the limits of detection of GBS using PCR or other molecular methods without need for culture.
Resumo:
Objective—To determine whether genogroup 1 porcine torque teno virus (g1-TTV) can potentiate clinical disease associated with porcine circovirus type 2 (PCV2).
Sample population—33 gnotobiotic baby pigs.
Procedures—Pigs were allocated into 7 groups: group A, 5 uninoculated control pigs from 3 litters; group B, 4 pigs oronasally inoculated with PCV2 alone; group C, 4 pigs inoculated IP with first-passage g1-TTV alone; group D, 4 pigs inoculated IP with fourth-passage g1-TTV alone; group E, 6 pigs inoculated IP with first-passage g1-TTV and then oronasally inoculated with PCV2 7 days later; group F, 6 pigs inoculated IP with fourth-passage g1-TTV and then inoculated oronasally with PCV2 7 days later; and group G, 4 pigs inoculated oro-nasally with PCV2 and then inoculated IP with fourth-passage g1-TTV 7 days later.
Results—6 of 12 pigs inoculated with g1-TTV prior to PCV2 developed acute onset of postweaning multisystemic wasting syndrome (PMWS). None of the pigs inoculated with g1-TTV alone or PCV2 alone or that were challenge exposed to g1-TTV after establishment of infection with PCV2 developed clinical illness. Uninoculated control pigs remained healthy.
Conclusions and Clinical Relevance—These data implicated g1-TTV as another viral infection that facilitates PCV2-induced PMWS. This raises the possibility that torque teno viruses in swine may contribute to disease expression currently associated with only a single infectious agent.
Resumo:
Background: The time synchronization is a very important ability for the acquisition and performance of motor skills that generate the need to adapt the actions of body segments to external events of the environment that are changing their position in space. Down Syndrome (DS) individuals may present some deficits to perform tasks with synchronization demand. We aimed to investigate the performance of individuals with DS in a simple Coincident Timing task. Method. 32 individuals were divided into 2 groups: the Down syndrome group (DSG) comprised of 16 individuals with average age of 20 (+/- 5 years old), and a control group (CG) comprised of 16 individuals of the same age. All individuals performed the Simple Timing (ST) task and their performance was measured in milliseconds. The study was conducted in a single phase with the execution of 20 consecutive trials for each participant. Results: There was a significant difference in the intergroup analysis for the accuracy adjustment - Absolute Error (Z = 3.656, p = 0.001); and for the performance consistence - Variable Error (Z = 2.939, p = 0.003). Conclusion: DS individuals have more difficulty in integrating the motor action to an external stimulus and they also present more inconsistence in performance. Both groups presented the same tendency to delay their motor responses. © 2013 Torriani-Pasin et al.; licensee BioMed Central Ltd.
Resumo:
Six full-term newborn infants are described who suffered from severe adult respiratory distress syndrome (ARDS). The triggering event was intrauterine/perinatal asphyxia in five, and group B streptococcal (GBS) septicemia in three. All had severe respiratory distress/failure and were ventilated mechanically with high concentrations of inspired oxygen and positive end-expiratory pressure. Radiography of the chest showed dense bilateral consolidation with air bronchograms and reduced lung volume. Persistent pulmonary hypertension (PPH) was documented in all cases. The coincidence of ARDS and PPH rendered respiratory management extremely difficult. For this reason high-frequency ventilation was instituted in all patients in order to improve CO2 elimination and induce respiratory alkalosis. Acute complications of respiratory therapy were encountered in five patients (pneumothorax, pulmonary interstitial emphysema, pneumopericardium). Three infants died (irreversible septic shock, progressive severe hypoxemia, and sudden cardiac arrest) after 17, 80, and 175 h of life. Histologic examination of the lungs was possible in all fatal cases and revealed typical changes of acute to subacute stages of ARDS. Three infants survived, the mean time of mechanical respiratory support being 703 h. Two patients were still dependent on oxygen after 1 month of life, and all survivors had increased interstitial markings and increased lung volumes on their chest roentgenograms at this time.