971 resultados para SUSCEPTIBILITY GENE


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) causes growth arrest in most cell types. TGF-β induces hypophosphorylation of retinoblastoma susceptibility gene 1 product (RB), which sequesters E2F factors needed for progression into S phase of the cell cycle, thereby leading to cell cycle arrest at G1. It is possible, however, that the E2F-RB complex induced by TGF-β may bind to E2F sites and suppress expression of specific genes whose promoters contain E2F binding sites. We show here that TGF-β treatment of HaCaT cells induced the formation of E2F4-RB and E2F4-p107 complexes, which are capable of binding to E2F sites. Disruption of their binding to DNA with mutation in the E2F sites did not change the expression from promoters of E2F1, B-myb, or HsORC1 genes in cycling HaCaT cells. However, the same mutation stimulated 5- to 6-fold higher expression from all three promoters in cells treated with TGF-β. These results suggest that E2F binding sites play an essential role in the transcription repression of these genes under TGF-β treatment. Consistent with their repression of TGF-β-induced gene expression, introduction of E2F sites into the promoter of cyclin-dependent kinase inhibitor p15INK4B gene effectively inhibited its induction by TGF-β. Experiments utilizing Gal4-RB and Gal4-p107 chimeric constructs demonstrated that either RB or p107 could directly repress TGF-β induction of p15INK4B gene when tethered to p15INK4B promoter through Gal4 DNA binding sites. Therefore, E2F functions to bring RB and p107 to E2F sites and represses gene expression by TGF-β. These results define a specific function for E2F4-RB and E2F4-p107 complexes in gene repression under TGF-β treatment, which may constitute an integral part of the TGF-β-induced growth arrest program.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the results of two studies examining the genetic overlap between schizophrenia and velocardiofacial syndrome. In study A, we characterize two interstitial deletions identified on chromosome 22q11 in a sample of schizophrenic patients. The size of the deletions was estimated to be between 1.5 and 2 megabases. In study B, we examine whether variations in deletion size are associated with the schizophrenic phenotype in velocardiofacial syndrome patients. Our results show that a region of the genome that has been previously implicated by genetic linkage analysis can harbor genetic lesions that increase the susceptibility to schizophrenia. Our findings should facilitate identification and cloning of the schizophrenia susceptibility gene(s) in this region and identification of more homogeneous subgroups of patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The human squamous cell carcinoma cell line SCC83-01-82 (SCC) contains mutations in both the H-ras and p53 genes, but it exhibits a nontumorigenic phenotype in nude mice. This cell line can be converted into a cell line with a tumorigenic phenotype, SCC83-01-82CA (CA), by treatment with the mutagen methyl methanesulfonate (MMS). This indicates that additional genetic events leading to expression of a cooperating tumor susceptibility gene(s) may be required for tumorigenicity. To identify the cooperating gene(s), an expression cDNA library was made from tumorigenic Ca cells. The library DNA was transfected into nontumorigenic SCC cells and the transfected SCC cells were then injected into nude mice for the selection of a tumorigenic phenotype. Tumors developed in 3 of the 18 mice after injection. Several new cell lines were established from these transfected cell-induced tumors and designated as CATR cells. Tumor histology and karyotype analysis of these cells indicated that they were of human epithelial cell origin. All the CATR cells have the library vector sequence integrated in their genome. Cell line CATR1 expressed a single message from the integrated library representing a 1.3-kb cDNA insert that was absent from untransfected SCC cells or MMS-converted CA cells. This 1.3-kb cDNA insert was cloned by PCR amplification of reverse-transcribed CATR1 total RNA and was designated CATR1.3. The nucleotide sequence of CATR1.3 encodes a peptide of 79 amino acids, has a long 3' untranslated region, and represents an unknown gene product that was associated with the tumorigenic conversion due to the transfected expression library.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cross-species comparative genomics is a powerful strategy for identifying functional regulatory elements within noncoding DNA. In this paper, comparative analysis of human and mouse intronic sequences in the breast cancer susceptibility gene (BRCA1) revealed two evolutionarily conserved noncoding sequences (CNS) in intron 2, 5 kb downstream of the core BRCA1 promoter. The functionality of these elements was examined using homologous-recombination-based mutagenesis of reporter gene-tagged cosmids incorporating these regions and flanking sequences from the BRCA1 locus. This showed that CNS-1 and CNS-2 have differential transcriptional regulatory activity in epithelial cell lines. Mutation of CNS-1 significantly reduced reporter gene expression to 30% of control levels. Conversely mutation of CNS-2 increased expression to 200% of control levels. Regulation is at the level of transcription and shows promoter specificity. Both elements also specifically bind nuclear proteins in vitro. These studies demonstrate that the combination of comparative genomics and functional analysis is a successful strategy to identify novel regulatory elements and provide the first direct evidence that conserved noncoding sequences in BRCA1 regulate gene expression. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is a multifactorial autoimmune disease, with strong genetic component. Several susceptibility loci contribute to genetic predisposition to T1D. One of these loci have been mapped to chromosome 1q42 in UK and US joined affected family data sets but needs to be replicated in other populations. In this study, we evaluated sixteen microsatellites located on 1q42 for linkage with T1D in 97 Russian affected sibling pairs. A 2.7-cm region of suggestive linkage to T1D between markers D1S1644 and D1S225 was found by multipoint linkage analysis. The peak of linkage was shown for D1S2847 (P = 0.0005). Transmission disequilibrium test showed significant undertransmission of the 156-bp allele of D1S2847 from parents to diabetic children (28 transmissions vs. 68 nontransmissions, P = 0.043) in Russian affected families. A preferential transmission from parents to diabetic offspring was also shown for the T(-25) and T1362 alleles of the C/T(-25) and C/T1362 dimorphisms, both located at the TAF5L gene, which is situated 103 kb from D1S2847. Together with the A/C744 TAF5L SNP, these markers share common T(-25)/A744/T1362 and C(-25)/C744/T1362 haplotypes associated with higher and lower risk of diabetes (Odds Ratio = 2.15 and 0.62, respectively). Our results suggest that the TAF5L gene, encoding TAF5L-like RNA polymerase II p300/CBP associated factor (PCAF)-associated factor, could represent the susceptibility gene for T1D on chromosome 1q42 in Russian affected patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Type 1 diabetes (TID) susceptibility locus, IDDM8, has been accurately mapped to 200 kilobases at the terminal end of chromosome 6q27. This is within the region which harbours a cluster of three genes encoding proteasome subunit beta 1 (PMSB1), TATA-box binding protein (TBP) and a homologue of mouse programming cell death activator 2 (PDCD2). In this study, we evaluated whether these genes contribute to TID susceptibility using the transmission disequilibrium test of the data set from 114 affected Russian simplex families. The A allele of the G/A1180 single nucleotide polymorphism (SNP) at the PDCD2 gene, which was significant in its preferential transfer from parents to diabetic children (75 transmissions vs. 47 non-transmissionS, x(2) = 12.85, P corrected = 0.0038), was found to be associated with T1D. G/A1180 dimorphism and two other SNPs, C/T771 TBP and G/T(-271) PDCD2, were shown to share three common haplotypes, two of which (A-T-G and A-T-T) have been associated with higher development risk of TID. The third haplotype (G-T-G) was related to having a lower risk of disease. These findings suggest that the PDCD2 gene is a likely susceptibility gene for TID within IDDM8. However, it was not possible to exclude the TBP gene from being another putative susceptibility gene in this region. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Attempting to achieve long-lasting and stable resistance using uniformly deployed rice varieties is not a sustainable approach. The real situation appears to be much more complex and dynamic, one in which pathogens quickly adapt to resistant varieties. To prevent disease epidemics, deployment should be customized and this decision will require interdisciplinary actions. This perspective article aims to highlight the current progress on disease resistance deployment to control bacterial blight in rice. Although the model system rice-Xanthomonas oryzae pv. oryzae has distinctive features that underpin the need for a case-by-case analysis, strategies to integrate those elements into a unique decision tool could be easily extended to other crops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The FANCA gene is one of the genes in which mutations lead to Fanconi anaemia, a rare autosomal recessive disorder characterised by congenital abnormalities, bone marrow failure, and predisposition to malignancy. FANCA is also a potential breast and ovarian cancer susceptibility gene. A novel allele was identified which has a tandem duplication of a 13 base pair sequence in the promoter region. Methods: We screened germline DNA from 352 breast cancer patients, 390 ovarian cancer patients and 256 normal controls to determine if the presence of either of these two alleles was associated with an increased risk of breast or ovarian cancer. Results: The duplication allele had a frequency of 0.34 in the normal controls. There was a nonsignificant decrease in the frequency of the duplication allele in breast cancer patients. The frequency of the duplication allele was significantly decreased in ovarian cancer patients. However, when malignant and benign tumours were considered separately, the decrease was only significant in benign tumours. Conclusion: The allele with the tandem duplication does not appear to modify breast cancer risk but may act as a low penetrance protective allele for ovarian cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background:: The first major Crohn's disease (CD) susceptibility gene, NOD2, implicates the innate intestinal immune system and other pattern recognition receptors in the pathogenesis of this chronic, debilitating disorder. These include the Toll‐like receptors, specifically TLR4 and TLR5. A variant in the TLR4 gene (A299G) has demonstrated variable association with CD. We aimed to investigate the relationship between TLR4 A299G and TLR5 N392ST, and an Australian inflammatory bowel disease cohort, and to explore the strength of association between TLR4 A299G and CD using global meta‐analysis. Methods:: Cases (CD = 619, ulcerative colitis = 300) and controls (n = 360) were genotyped for TLR4 A299G, TLR5 N392ST, and the 4 major NOD2 mutations. Data were interrogated for case‐control analysis prior to and after stratification by NOD2 genotype. Genotype–phenotype relationships were also sought. Meta‐analysis was conducted via RevMan. Results:: The TLR4 A299G variant allele showed a significant association with CD compared to controls (P = 0.04) and a novel NOD2 haplotype was identified which strengthened this (P = 0.003). Furthermore, we identified that TLR4 A299G was associated with CD limited to the colon (P = 0.02). In the presence of the novel NOD2 haplotype, TLR4 A299G was more strongly associated with colonic disease (P < 0.001) and nonstricturing disease (P = 0.009). A meta‐analysis of 11 CD cohorts identified a 1.5‐fold increase in risk for the variant TLR4 A299G allele (P < 0.00001). Conclusions:: TLR 4 A299G appears to be a significant risk factor for CD, in particular colonic, nonstricturing disease. Furthermore, we identified a novel NOD2 haplotype that strengthens the relationship between TLR4 A299G and these phenotypes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The nitric oxide synthase 1 adaptor protein gene (NOS1AP) has previously been recognised as a schizophrenia susceptibility gene due to its role in glutamate neurotransmission. The gene is believed to inhibit nitric oxide (NO) production activated by the N-methyl-d-aspartate (NMDA) receptor and reduced NO levels have been observed in schizophrenia patients. However, association studies investigating NOS1AP and schizophrenia have produced inconsistent results, most likely because schizophrenia is a clinically heterogeneous disorder. This study aims to investigate the association between NOS1AP variants and defined depression phenotypes of schizophrenia. Methods Nine NOS1AP SNPs, rs1415259, rs1415263, rs1858232, rs386231, rs4531275, rs4656355, rs4657178, rs6683968 and rs6704393 were genotyped in 235 schizophrenia subjects screened for various phenotypes of depression. Result One NOS1AP SNP (rs1858232) was associated with the broad diagnosis of schizophrenia and eight SNPs were associated with depression related phenotypes within schizophrenia. The rs1415259 SNP showed strong association with sleep dysregulation phenotypes of depression. Conclusion Results suggest that NOS1AP variants are associated with various forms of depression in schizophrenia and are more prevalent in males. Limitation Schizophrenia is a clinically heterogeneous disease that can vary greatly between different ethnic and geographic populations so our observations should be viewed with caution until they are independently replicated, particularly in larger patient cohorts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Dystrobrevin binding protein 1 (DTNBP1) is a schizophrenia susceptibility gene involved with neurotransmission regulation (especially dopamine and glutamate) and neurodevelopment. The gene is known to be associated with cognitive deficit phenotypes within schizophrenia. In our previous studies, DTNBP1 was found associated not only with schizophrenia but with other psychiatric disorders including psychotic depression, post-traumatic stress disorder, nicotine dependence and opiate dependence. These findings suggest that DNTBP1 may be involved in pathways that lead to multiple psychiatric phenotypes. In this study, we explored the association between DTNBP1 SNPs (single nucleotide polymorphisms) and multiple psychiatric phenotypes included in the Diagnostic Interview of Psychosis (DIP). METHODS: Five DTNBP1 SNPs, rs17470454, rs1997679, rs4236167, rs9370822 and rs9370823, were genotyped in 235 schizophrenia subjects screened for various phenotypes in the domains of depression, mania, hallucinations, delusions, subjective thought disorder, behaviour and affect, and speech disorder. SNP-phenotype association was determined with ANOVA under general, dominant/recessive and over-dominance models. RESULTS: Post hoc tests determined that SNP rs1997679 was associated with visual hallucination; SNP rs4236167 was associated with general auditory hallucination as well as specific features including non-verbal, abusive and third-person form auditory hallucinations; and SNP rs9370822 was associated with visual and olfactory hallucinations. SNPs that survived correction for multiple testing were rs4236167 for third-person and abusive form auditory hallucinations; and rs9370822 for olfactory hallucinations. CONCLUSION: These data suggest that DTNBP1 is likely to play a role in development of auditory related, visual and olfactory hallucinations which is consistent with evidence of DTNBP1 activity in the auditory processing regions, in visual processing and in the regulation of glutamate and dopamine activity

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recurrent miscarriage (RM) is defined as three consecutive pregnancy failures and is estimated to affect ~1% of couples trying to conceive. The cause of RM remains unknown in approximately 50% of cases. In this study, it was hypothesized that some of the underlying factors yet to be discovered are genetic. The aim was to search for mutations in genes AMN, EPCR, TM, and p53 known to cause miscarriage in mouse models and thereby find new genetic causes for unexplained miscarriages in humans. In addition, the mitochondrial genome was studied because mitochondria are involved in processes important in early development. Furthermore, sex chromosome characteristics suggested to underlie miscarriage were also studied. A total of 40 couples and 8 women with unexplained RM were collected for this study and screened for mutations in the candidate genes. Six interesting exonic or potential splice site disrupting variations were detected. However, their phenotypic effects cannot be determined without further investigations. Additionally, an association between the C11992A polymorphism of the p53 gene and RM was detected. The results indicate that women carrying the C/A or A/A genotype have a two-fold higher risk for RM than women with a C/C genotype. This strengthens the results of previous studies reporting that p53 sequence variations may cause miscarriage. The role of variation C11992A in embryonic development is, however, difficult to predict without further studies When screening the mitochondrial genome a heteroplasmic mtDNA variation was found in an unexpected high number of women, as heteroplasmic variations are reported to be rare. One novel variation and 18 previously reported polymorphisms were detected in the mitochondrial genome. Although the detected variations are likely to be neutral polymorphisms, a role in the aetiology of miscarriage cannot be excluded as some mtDNA variations may be pathogenic only when a threshold is reached. Recent publications have reported skewed X chromosome inactivation and Y chromosome microdeletions to be associated with RM. Therefore, these sex chromosome abnormalities in the context of RM were investigated. No associations between skewed X chromosome inactivation or Y chromosome microdeletions and RM in the Finnish patients were detected. Data on ancestral birthplaces of the patients were collected to study any possible geographic clustering, which would indicate a common predisposing factor. The results showed clustering of the birthplaces in eastern Finland in a subset of patients. This suggests a possibility of an enriched susceptibility gene which may contribute to RM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Breast cancer is the most commonly occurring cancer among women, and its incidence is increasing worldwide. Positive family history is a well established risk factor for breast cancer, and it is suggested that the proportion of breast cancer that can be attributed to genetic factors may be as high as 30%. However, all the currently known breast cancer susceptibility genes are estimated to account for 20-30% of familial breast cancer, and only 5% of the total breast cancer incidence. It is thus likely that there are still other breast cancer susceptibility genes to be found. Cellular responses to DNA damage are crucial for maintaining genomic integrity and preventing the development of cancer. The genes operating in DNA damage response signaling network are thus good candidates for breast cancer susceptibility genes. The aim of this study was to evaluate the role of three DNA damage response associated genes, ATM, RAD50, and p53, in breast cancer. ATM, a gene causative for ataxia telangiectasia (A-T), has long been a strong candidate for a breast cancer susceptibility gene because of its function as a key DNA damage signal transducer. We analyzed the prevalence of known Finnish A-T related ATM mutations in large series of familial and unselected breast cancer cases from different geographical regions in Finland. Of the seven A-T related mutations, two were observed in the studied familial breast cancer patients. Additionally, a third mutation previously associated with breast cancer susceptibility was also detected. These founder mutations may be responsible for excess familial breast cancer regionally in Northern and Central Finland, but in Southern Finland our results suggest only a minor effect, if any, of any ATM genetic variants on familial breast cancer. We also screened the entire coding region of the ATM gene in 47 familial breast cancer patients from Southern Finland, and evaluated the identified variants in additional cases and controls. All the identified variants were too rare to significantly contribute to breast cancer susceptibility. However, the role of ATM in cancer development and progression was supported by the results of the immunohistochemical studies of ATM expression, as reduced ATM expression in breast carcinomas was found to correlate with tumor differentiation and hormone receptor status. Aberrant ATM expression was also a feature shared by the BRCA1/2 and the difficult-to-treat ER/PR/ERBB2-triple-negative breast carcinomas. From the clinical point of view, identification of phenotypic and genetic similarities between the BRCA1/2 and the triple-negative breast tumors could have an implication in designing novel targeted therapies to which both of these classes of breast cancer might be exceptionally sensitive. Mutations of another plausible breast cancer susceptibility gene, RAD50, were found to be very rare, and RAD50 can only be making a minor contribution to familial breast cancer predisposition in UK and Southern Finland. The Finnish founder mutation RAD50 687delT seems to be a null allele and may carry a small increased risk of breast cancer. RAD50 is not acting as a classical tumor suppressor gene, but it is possible that RAD50 haploinsufficiency is contributing to cancer. In addition to relatively rare breast cancer susceptibility alleles, common polymorphisms may also be associated with increased breast cancer risk. Furthermore, these polymorphisms may have an impact on the progression and outcome of the disease. Our results suggest no effect of the common p53 R72P polymorphism on familial breast cancer risk or breast cancer risk in the population, but R72P seems to be associated with histopathologic features of the tumors and survival of the patients; 72P homozygous genotype was an independent prognostic factor among the unselected breast cancer patients, with a two-fold increased risk of death. These results present important novel findings also with clinical significance, as codon 72 genotype could be a useful additional prognostic marker in breast cancer, especially among the subgroup of patients with wild-type p53 in their tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bipolar disorder (BP) is a complex psychiatric disorder characterized by episodes of mania and depression. BP affects approximately 1% of the world’s population and shows no difference in lifetime prevalence between males and females. BP arises from complex interactions among genetic, developmental and environmental factors, and it is likely that several predisposing genes are involved in BP. The genetic background of BP is still poorly understood, although intensive and long-lasting research has identified several chromosomal regions and genes involved in susceptibility to BP. This thesis work aims to identify the genetic variants that influence bipolar disorder in the Finnish population by candidate gene and genome-wide linkage analyses in families with many BP cases. In addition to diagnosis-based phenotypes, neuropsychological traits that can be seen as potential endophenotypes or intermediate traits for BP were analyzed. In the first part of the thesis, we examined the role of the allelic variants of the TSNAX/DISC1 gene cluster to psychotic and bipolar spectrum disorders and found association of distinct allelic haplotypes with these two groups of disorders. The haplotype at the 5’ end of the Disrupted-in-Schizophrenia-1 gene (DISC1) was over-transmitted to males with psychotic disorder (p = 0.008; for an extended haplotype p = 0.0007 with both genders), whereas haplotypes at the 3’ end of DISC1 associated with bipolar spectrum disorder (p = 0.0002; for an extended haplotype p = 0.0001). The variants of these haplotypes also showed association with different cognitive traits. The haplotypes at the 5’ end associated with perseverations and auditory attention, while the variants at the 3’ end associated with several cognitive traits including verbal fluency and psychomotor processing speed. Second, in our complete set of BP families with 723 individuals we studied six functional candidate genes from three distinct signalling systems: serotonin-related genes (SLC6A4 and TPH2), BDNF -related genes (BDNF, CREB1 and NTRK2) and one gene related to the inflammation and cytokine system (P2RX7). We replicated association of the functional variant Val66Met of BDNF with BP and better performance in retention. The variants at the 5’ end of SLC6A4 also showed some evidence of association among males (p = 0.004), but the widely studied functional variants did not yield any significant results. A protective four-variant haplotype on P2RX7 showed evidence of association with BP and executive functions: semantic and phonemic fluency (p = 0.006 and p = 0.0003, respectively). Third, we analyzed 23 bipolar families originating from the North-Eastern region of Finland. A genome-wide scan was performed using the 6K single nucleotide polymorphism (SNP) array. We identified susceptibility loci at chromosomes 7q31 with a LOD score of 3.20 and at 9p13.1 with a LOD score of 4.02. We followed up both linkage findings in the complete set of 179 Finnish bipolar families. The finding on chromosome 9p13 was supported (maximum LOD score of 3.02), but the susceptibility gene itself remains unclarified. In the fourth part of the thesis, we wanted to test the role of the allelic variants that have associated with bipolar disorder in recent genome-wide association studies (GWAS). We could confirm findings for the DFNB31, SORCS2, SCL39A3, and DGKH genes. The best signal in this study comes from DFNB31, which remained significant after multiple testing corrections. Two variants of SORCS2 were allelic replications and presented the same signal as the haplotype analysis. However, no association was detected with the PALB2 gene, which was the most significantly associated region in the previous GWAS. Our results indicate that BP is heterogeneous and its genetic background may accordingly vary in different populations. In order to fully understand the allelic heterogeneity that underlies common diseases such as BP, complete genome sequencing for many individuals with and without the disease is required. Identification of the specific risk variants will help us better understand the pathophysiology underlying BP and will lead to the development of treatments with specific biochemical targets. In addition, it will further facilitate the identification of environmental factors that alter risk, which will potentially provide improved occupational, social and psychological advice for individuals with high risk of BP.