944 resultados para SURFACE-DENSITY


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the three-dimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years “target” simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-to-high latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied everywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained large-scale observations of this field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyse the secular effects of a long-lived Galactic spiral structure on the stellar orbits with mean radii close to the corotation resonance. By test-particle simulations and different spiral potential models with parameters constrained on observations, we verified the formation of a minimum with amplitude ∼30–40 per cent of the background disc stellar density at corotation. Such a minimum is formed by the secular angular momentum transfer between stars and the spiral density wave on both sides of corotation. We demonstrate that the secular loss (gain) of angular momentum and decrease (increase) of mean orbital radius of stars just inside (outside) corotation can counterbalance the opposite trend of exchange of angular momentum shown by stars orbiting the librational points L4/5 at the corotation circle. Such secular processes actually allow steady spiral waves to promote radial migration across corotation. We propose some pieces of observational evidence for the minimum stellar density in the Galactic disc, such as its direct relation to the minimum in the observed rotation curve of the Galaxy at the radius r ∼ 9 kpc (for R0 = 7.5 kpc), as well as its association with a minimum in the distribution of Galactic radii of a sample of open clusters older than 1Gyr. The closeness of the solar orbit adius to the corotation resonance implies that the solar orbit lies inside a ring of minimum surface density (stellar + gas). This also implies a correction to larger values for the estimated total mass of the Galactic disc, and consequently, a greater contribution of the disc componente to the inner rotation curve of the Galaxy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rapid and sensitive detection of chemical and biological analytes becomes increasingly important in areas such as medical diagnostics, food control and environmental monitoring. Optical biosensors based on surface plasmon resonance (SPR) and optical waveguide spectroscopy have been extensively pushed forward in these fields. In this study, we combine SPR, surface plasmon-enhanced fluorescence spectroscopy (SPFS) and optical waveguide spectroscopy with hydrogel thin film for highly sensitive detection of molecular analytes.rnrnA novel biosensor based on SPFS which was advanced through the excitation of long range surface plasmons (LRSPs) is reported in this study. LRSPs are special surface plasmon waves propagating along thin metal films with orders of magnitude higher electromagnetic field intensity and lower damping than conventional SPs. Therefore, their excitation on the sensor surface provides further increased fluorescence signal. An inhibition immunoassay based on LRSP-enhanced fluorescence spectroscopy (LRSP-FS) was developed for the detection of aflatoxin M1 (AFM1) in milk. The biosensor allowed for the detection of AFM1 in milk at concentrations as low as 0.6 pg mL-1, which is about two orders of magnitude lower than the maximum AFM1 residue level in milk stipulated by the European Commission legislation.rnrnIn addition, LRSPs probe the medium adjacent to the metallic surface with more extended evanescent field than regular SPs. Therefore, three-dimensional binding matrices with up to micrometer thickness have been proposed for the immobilization of biomolecular recognition elements with large surface density that allows to exploit the whole evanescent field of LRSP. A photocrosslinkable carboxymethyl dextran (PCDM) hydrogel thin film is used as a binding matrix, and it is applied for the detection of free prostate specific antigen (f-PSA) based on the LRSP-FS and sandwich immunoassay. We show that this approach allows for the detection of f-PSA at low femto-molar range, which is approximately four orders of magnitude lower than that for direct detection of f-PSA based on the monitoring of binding-induced refractive index changes.rnrnHowever, a three dimensional hydrogel binding matrix with micrometer thickness can also serve as an optical waveguide. Based on the measurement of binding-induced refractive index changes, a hydrogel optical waveguide spectroscopy (HOWS) is reported for a label-free biosensor. This biosensor is implemented by using a SPR optical setup in which a carboxylated poly(N-isoproprylacrylamide) (PNIPAAm) hydrogel film is attached on a metallic surface and modified by protein catcher molecules. Compared to regular SPR biosensor with thiol self-assembled monolayer (SAM), HOWS provides an order of magnitude improved resolution in the refractive index measurements and enlarged binding capacity owing to its low damping and large swelling ratio, respectively. A model immunoassay experiment revealed that HOWS allowed detection of IgG molecules with a 10 pM limit of detection (LOD) that was five-fold lower than that achieved for SPR with thiol SAM. For the high capacity hydrogel matrix, the affinity binding was mass transport limited.rnrnThe mass transport of target molecules to the sensor surface can play as critical a role as the chemical reaction itself. In order to overcome the diffusion-limited mass transfer, magnetic iron oxide nanoparticles were employed. The magnetic nanoparticles (MNPs) can serve both as labels providing enhancement of the refractive index changes, and “vehicles” for rapidly delivering the analytes from sample solution to an SPR sensor surface with a gradient magnetic field. A model sandwich assay for the detection of β human chorionic gonadotropin (βhCG) has been utilized on a gold sensor surface with metallic diffraction grating structure supporting the excitation of SPs. Various detection formats including a) direct detection, b) sandwich assay, c) MNPs immunoassay without and d) with applied magnetic field were compared. The results show that the highly-sensitive MNPs immunoassay improves the LOD on the detection of βhCG by a factor of 5 orders of magnitude with respect to the direct detection.rn

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Surface platforms were engineered from poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) copolymers to study the mechanisms involved in the non-specific adhesion of Escherichia coli (E. coli) bacteria. Copolymers with three different grafting densities (PMOXA chains/Lysine residue of 0.09, 0.33 and 0.56) were synthesized and assembled on niobia (Nb O ) surfaces. PLL-modified and bare niobia surfaces served as controls. To evaluate the impact of fimbriae expression on the bacterial adhesion, the surfaces were exposed to genetically engineered E. coli strains either lacking, or constitutively expressing type 1 fimbriae. The bacterial adhesion was strongly influenced by the presence of bacterial fimbriae. Non-fimbriated bacteria behaved like hard, charged particles whose adhesion was dependent on surface charge and ionic strength of the media. In contrast, bacteria expressing type 1 fimbriae adhered to the substrates independent of surface charge and ionic strength, and adhesion was mediated by non-specific van der Waals and hydrophobic interactions of the proteins at the fimbrial tip. Adsorbed polymer mass, average surface density of the PMOXA chains, and thickness of the copolymer films were quantified by optical waveguide lightmode spectroscopy (OWLS) and variable-angle spectroscopic ellipsometry (VASE), whereas the lateral homogeneity was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Streaming current measurements provided information on the charge formation of the polymer-coated and the bare niobia surfaces. The adhesion of both bacterial strains could be efficiently inhibited by the copolymer film only with a grafting density of 0.33 characterized by the highest PMOXA chain surface density and a surface potential close to zero.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the threedimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years ‘‘target’’ simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-tohigh latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied verywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained largescale observations of this field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We studied single molecular interactions between surface-attached rat CD2, a T-lymphocyte adhesion receptor, and CD48, a CD2 ligand found on antigen-presenting cells. Spherical particles were coated with decreasing densities of CD48–CD4 chimeric molecules then driven along CD2-derivatized glass surfaces under a low hydrodynamic shear rate. Particles exhibited multiple arrests of varying duration. By analyzing the dependence of arrest frequency and duration on the surface density of CD48 sites, it was concluded that (i) arrests were generated by single molecular bonds and (ii) the initial bond dissociation rate was about 7.8 s−1. The force exerted on bonds was increased from about 11 to 22 pN; the detachment rate exhibited a twofold increase. These results agree with and extend studies on the CD2–CD48 interaction by surface plasmon resonance technology, which yielded an affinity constant of ≈104 M−1 and a dissociation rate of ≥6 s−1. It is concluded that the flow chamber technology can be an useful complement to atomic force microscopy for studying interactions between isolated biomolecules, with a resolution of about 20 ms and sensitivity of a few piconewtons. Further, this technology might be extended to actual cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Size-controlled, catalytically active PVP-stabilised Pd nanoparticles have been studied by operando liquid phase XAS during the Suzuki cross-coupling of iodonanisole and phenylboronic acid in MeOH-toluene using KOMe base. XAS reveals nanoparticles are stable to metal leaching throughout the reaction, with surface density Pd defect sites directly implicated in the catalytic cycle. The efficacy of popular selective chemical and structural poisons for distinguishing heterogeneous and homogeneous contributions in Pd catalysed cross-couplings is also explored. © 2010 The Royal Society of Chemistry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The strong couplings between different degrees of freedom are believed to be responsible for novel and complex phenomena discovered in transition metal oxides (TMOs). The physical complexity is directly responsible for their tunability. Creating surfaces/interfaces add an additional ' man-made' twist, approaching the quantum phenomena of correlated materials. ^ The dissertation focused on the structural and electronic properties in proximity of surface of three prototype TMO compounds by using three complementary techniques: scanning tunneling microscopy, angle-resolved photoelectron spectroscopy and low energy electron diffraction, particularly emphasized the effects of broken symmetry and imperfections like defects on the coupling between charge and lattice degrees of freedom. ^ Ca1.5Sr0.5RuO4 is a layered ruthenate with square lattice and at the boundary of magnetic/orbital instability in Ca2-xSrxRuO4. That the substitution of Sr 2+ with Ca2+ causing RuO6 rotation narrows the dxy band width and changes the Fermi surface topology. Particularly, the γ(dxy) Fermi surface sheet exhibited hole-like in Ca1.5Sr0.5RuO4 in contrast to electron-like in Sr2RuO4, showing a strong charge-lattice coupling. ^ Na0.75CoO2 is a layered cobaltite with triangular lattice exhibiting extraordinary thermoelectric properties. The well-ordered CoO2-terminated surface with random Na distribution was observed. However, lattice constants of the surface are smaller than that in bulk. The surface density of states (DOS) showed strong temperature dependence. Especially, an unusual shift of the minimum DOS occurs below 230 K, clearly indicating a local charging effect on the surface. ^ Cd2Re2O7 is the first known pyrochlore oxide superconductor (Tc ∼ 1K). It exhibited an unusual second-order phase transition occurring at TS1 = 200 K and a controversial first-order transition at TS2 = 120 K. While bulk properties display large anomalies at TS1 but rather subtle and sample-dependent changes at TS2, the surface DOS near the EF show no change at T s1 but a substantial increase below TS2---a complete reversal as the signature for the transitions. We argued that crystal imperfections, mainly defects, which were considerably enhanced at the surface, resulted in the transition at TS2. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effective control of dense, high-quality carbon nanotube arrays using hierarchical multilayer catalyst patterns is demonstrated. Scanning/transmission electron microscopy, atomic force microscopy, Raman spectroscopy, and numerical simulations show that by changing the secondary and tertiary layers one can control the properties of the nanotube arrays. The arrays with the highest surface density of vertically aligned nanotubes are produced using a hierarchical stack of iron nanoparticles and alumina and silica layers differing in thickness by one order of magnitude from one another. The results are explained in terms of the catalyst structure effect on carbon diffusivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of arrays of vertically aligned nanotips on a moderately heated (up to 500 degrees C) Si surface exposed to reactive low-temperature radio frequency (RF) Ar+H(2) plasmas is studied. It is demonstrated that the nanotip surface density, aspect ratio and height dispersion strongly depend on the substrate temperature, discharge power, and gas composition. It is shown that nanotips with aspect ratios from 2.0 to 4.0 can only be produced at a higher RF power density (41.7 mW cm(-3)) and a hydrogen content of about 60%, and that larger aspect ratios can be achieved at substrate temperatures of about 300 degrees C. The use of higher (up to 500 degrees C) temperatures leads to a decrease of the aspect ratio but promotes the formation of more uniform arrays with the height dispersion decreasing to 1.5. At lower (approximately 20 mW cm(-3)) RF power density, only semispherical nanodots can be produced. Based on these experimental results, a nanotip formation scenario is proposed suggesting that sputtering, etching, hydrogen termination, and atom/radical re-deposition are the main concurrent mechanisms for the nanostructure formation. Numerical calculations of the ion flux distribution and hydrogen termination profiles can be used to predict the nanotip shapes and are in a good agreement with the experimental results. This approach can be applied to describe the kinetics of low-temperature formation of other nanoscale materials by plasma treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A complex multi-scale model and numerical simulations are used to demonstrate, by simulating the development of patterns of nanotips, nanowalls, nanoislands and nanovoids of a characteristic size of 5-100 nm, a greater degree of determinism in the formation of various nanostructures by using the low-density, low-temperature plasma-based processes. It is shown that in the plasma, in contrast to the neutral gas-based processes, one can synthesize nanostructures of various dimensionalities and shapes with a larger surface density, desired geometrical parameters and narrower size distribution functions. This effect is mainly attributed to strong ion focusing by irregular electric fields in the nanopatterns, which effectively redistributes the influxes of plasma-generated building units and thus provides a selective control of their delivery to the growing nanostructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114 nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin accretion discs around massive compact objects can support slow pressure modes of oscillations in the linear regime that have azimuthal wavenumber m = 1. We consider finite, flat discs composed of barotropic fluid for various surface density profiles and demonstrate through WKB analysis and numerical solution of the eigenvalue problem - that these modes are stable and have spatial scales comparable to the size of the disc. We show that the eigenvalue equation can be mapped to a Schrodinger like equation. The analysis of this equation shows that all eigenmodes have discrete spectra. We find that all the models we have considered support negative frequency eigenmodes; however, the positive eigenfrequency modes are only present in power-law discs, albeit for physically uninteresting values of the power-law index beta and barotropic index gamma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scanning tunneling microscopy/spectroscopy studies were carried out on single crystals of colossal magnetoresistive manganite Pr0.68Pb0.32MnO3 at different temperatures in order to probe their spatial homogeneity across the metal-insulator transition temperature TM-I(similar to 255 K). A metallic behavior of the local conductance was observed for temperatures T < TM-I. Zero bias conductance (dI/dV)v=(0), which is directly proportional to the local surface density of states at the Fermi level, shows a single distribution at temperatures T < 200 K suggesting a homogeneous electronic phase at low temperatures. In a narrow temperature window of 200 K < T < TM-I, however, an inhomogeneous distribution of (dI/dV)v=(0) has been observed. This result gives evidence for phase separation in the transition region in this compound.