978 resultados para SURFACE TREATMENTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was evaluate the dental enamel after whitening treatment with Opalescence Boost PF® 38%, correlating the structural alterations in the surface of the enamel with its respective pH and verify if whitened teeth submitted to different finishing and polishing techniques show similar surface texture to healthy teeth (control group). Sixty premolars were divided in 6 groups (n = 10), which had been immersed in artificial saliva during all the experiment. Protocol whitening was performed according to the manufacturer recommendations, and then the specimens were submitted to different polishing technique with Sof-Lex Pop On® disks, Flex Diamond® felt disks using two different micrometric polishing pastes (Enamelize® and Diamond Polish®) and two nanometric polishing pastes (Lummina-E Diamond and Lummina-E Alumina), according to the groups. Representative specimens were analyzed in scanning electronic microscopy (SEM). Whitening gel used in this experiment had modified the morphologic aspect of the enamel surface. It was found that two nanometric polishing pastes (G5 and G6) promoted a less rough surface compared to control group even after the whitening process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study sought to assess the use of chlorhexidine with several excipients as a dentin surface treatment and its effect on marginal adaptation of class V restorations with current-generation dentin bonding agents. A total of 120 human third molars were selected and allocated into 12 groups, with standardized buccal class V restorations randomly divided into preconditioned dentin rinsed with: water; water + chlorhexidine; ethanol; or ethanol + chlorhexidine. After rinsing of dentin (previously conditioned with 35% phosphoric acid) with the test solutions, the Adper single bond 2, prime and bond 2.1, and Excite bonding systems were applied randomly. Restorations were performed with FiltekTM Z350 XT composite resin. The resulting specimens were subjected to thermal and mechanical load cycling. Quantitative analysis of marginal adaptation was performed on epoxy replicas by means of scanning electron microscopy. Results were assessed by means of the Kruskal-Wallis test (percentages of continuous margins) and Wilcoxon test (differences between percentages of continuous margins before and after thermal cycling and mechanical loading), at a significance level of p < 0.05. Outcomes in the chlorhexidine-treated groups were not superior to those obtained with other treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This study investigated the repairs of resin composite restorations after using different surface treatments.Design: Eighty four truncated cones of Filtek Z350 were prepared and thermo-cycled (20,000 cycles). Surfaces were roughened with diamond bur and etched with 37% phosphoric acid. Those cones were divided into 7 groups (N=12): 1) Prime&Bond 2.1; 2) aluminum oxide sandblasting+Prime&Bond 2.1; 3) Er:YAG laser treatment+Prime&Bond 2.1; 4) 9.6% hydrofluoric acid for 2 min-Fsilane coupling agent.; 5) silane coupling agent; 6) auto-polymerized acrylic monomer+Prime&Bond 2.1; 7) Adper Scothbond SE. Teflon device was used to fabricate inverted truncated cones of repair composite over the surface-treated. The bonded specimens were stressed to failure under tension. The data were analyzed with oneway ANOVA and Tukey tests.Results: Mean repair strengths (SD, in MPa) were, Group-2: 18.8a; Group-1: 18.7a; Group-6: 13.4ab; Group-7: 9.5bc; Group-3: 7.5bcd; Group-4: 5.2cd; Group-5: 2.6d.Conclusions: The use of diamond bur and a conventional adhesive and the use of aluminum oxide sandblasting prior to adhesive provided a simple and cost-effective solutions to composite repair. Er:YAG laser, silane alone, 9.6% hydrofluoric acid plus silane or a self-etching adhesive results in inferior composite repair strengths. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The similarity of periodontitis and peri-implantitis demands for the utilization of similar principles for the treatment. Different decontamination methods were available cleaning of implant surfaces contaminated with bacteria. The aim of the present study was to evaluate the effects of various decontamination methods on reosseointegration on contaminated implants. Six mongrel dogs were used. The mandibular 1st molars and all premolars were removed bilaterally. Three months later, experi- mental implants with different surface characters were installed in each sides of the mandible. The implant consisted of two parts; the implant body and an exchangeable intraosseous implant cylinder. After osseointegration, experimental peri-implantitis was induced by cotton ligatures until the bone loss reached the junction of the two segments of the implant. After debridement of the bone defects, three treatment models were performed; (i) contaminated cylinders were removed, pristine cylinders were placed; (ii) contaminated cylinders were cleaned in situ with saline and (iii) contaminated cylinders was removed, cleaned with saline, sterilized by autoclaving. All implants were covered with membranes. After 3 months, histological evaluations were accomplished. The results indicated that in situ saline therapy demonstrated a significant difference at SLA surfaces in bone-implant-contact. Treatment of contaminated implants in situ with saline resulted in resolution of peri-implantitis and bone fill in defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of the investigation was to assess the effect of different surface treatments on the bond strength of veneering ceramics to zirconia. In a shear test, the influences of polishing, sandblasting, and silica-coating of the zirconia surface on bonding were assessed with five different veneering ceramics. In addition the effect of liner application was examined. With one veneering ceramic, the impact of regeneration firing of zirconia was also evaluated. Statistical analysis was performed with one-way ANOVA and post hoc Scheffé's test. Failure in every case occurred in the veneering ceramic adjacent to the interface with a thin layer of ceramic remaining on the zirconia surface, indicating that bond strength was higher than the cohesive strength of the veneering ceramic. Shear strength ranged from 23.5 +/- 3.4 MPa to 33.0 +/- 6.8 MPa without explicit correlation to the respective surface treatment. Regeneration firing significantly decreased the shear strength of both polished and sandblasted surfaces. Findings of this study revealed that bonding between veneering ceramics and zirconia might be based on chemical bonds. On this note, sandblasting was not a necessary surface pretreatment to enhance bond strength and that regeneration firing was not recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to analyse the osseointegrative potential of phosphoserine-tethered dendrons when applied as surface functionalisation molecules on titanium implants in a sheep model after 2 and 8 weeks of implantation. Uncoated and dendron-coated implants were implanted in six sheep. Sandblasted and etched (SE) or porous additive manufactured (AM) implants with and without additional dendron functionalisation (SE-PSD; AM-PSD) were placed in the pelvic bone. Three implants per group were examined histologically and six implants were tested biomechanically. After 2 and 8 weeks the bone-to-implant contact (BIC) total values of SE implants (43.7 ± 12.2; 53.3 ± 9.0 %) and SE-PSD (46.7 ± 4.5; 61.7 ± 4.9 %) as well as AM implants (20.49 ± 5.1; 43.9 ± 9.7 %) and AM-PSD implants (19.7 ± 3.5; 48.3 ± 15.6 %) showed no statistically significant differences. For SE-PSD and AM-PSD a separate analysis of only the cancellous BIC demonstrated a statistically significant difference after 2 and 8 weeks. Biomechanical findings proved the overall increased stability of the porous implants after 8 weeks. Overall, the great effect of implant macro design on osseointegration was further supported by additional phosphoserine-tethered dendrons for SE and AM implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The implementation of photovoltaic solar energy based on silicon is being slowed down by the shortage of raw material. In this context, the use of thinner wafers arises as a solution reducing the amount of silicon in the photovoltaic modules. On the other hand, the manufacturing process with thinner wafers can become complicated with traditional tools. The high number of damaged wafers reduces the global yield. It’s known that edge and surface cracks and defects determine the mechanical strength of wafers. There are several ways of removing these defects e. g. subjecting wafers to a mechanical polishing or to a chemical etching. This paper shows a comparison between different surface treatments and their influence on the mechanical strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbonated cement paste surfaces were characterised prior to application of surface treatments. Their chemical and physical properties varied with distance from the surface and method of carbonation. From the surface inwards the pH of expressed pore solutions and porosity were observed to increase. Hardness increased after natural carbonation, but decreased after accelerated carbonation. Generally, accelerated carbonation caused more extreme changes. Investigations were carried out on four concrete surface hardening treatments; two sodium silicates and two silicofluorides. These treatments penetrated and hardened the surface of naturally dried uncarbonated cement paste to a depth fo 250m. Silicofluorides reacted with uncarbonated and carbonated cement pastes to form calcium fluoride. The question of how sodium silicates harden the surface remains unanswered. Surface hardeners do not significantly affect the rate of carbonation, and are unsuitable for re-alkalising carbonated cement paste. Water repellent treatments studied include a silane, a siloxane and a silicone. The silane exhibited the maximum penetration, up to 24mm under favourable conditions, but penetration in all cases was limited by moisture in the substrate. Water repellent treatments slow down water vapour diffusion but, with time, internal moisture levels should reflect external relative humidities. Water repellents may be used to reduce carbonation-induced corrosion where ingress of moisture from intermittent wetting may be slowed. However, treatment with water repellents can temporarily push the carbonation front deeper into the concrete.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The solidification behaviour is described of two pure metals (Bi and Ni) and two eutectic alloys (A1-Ge and AI-Cu) under nonequilibrium conditions, in particular the microsecond pulsed laser surface melting. The resolidification behaviour of bismuth shows that epitaxial regrowth is the dominant mechanism. For mixed grain size, regrowth of larger grains dominates the microstructure and can result in the development of texture. In the case of nickel, epitaxial growth has been noted. For lower energy pulse-melted pool, grain refinement takes place, indicating nucleation of fresh nickel grains. The A1-Ge eutectic alloy indicates the nucleation and columnar growth of a metastable monoclinic phase from the melt-substrate interface at a high power density laser irradiation. An equiaxed microstructure containing the same monoclinic phase is obtained at a lower power density laser irradiation. It is shown that the requirement of solution partition acts as a barrier to eutectic regrowth from the substrate. The laser-melted pool of A1-Cu eutectic alloy includes columnar growth of c~-A1 and 0-A12Cu phase followed by the dendritic growth of A12Cu phase with ct-Al forming at the interdendritic space. In addition, a banded microstructure was observed in the resolidified laser-melted pool.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acquiring detailed knowledge of surface treatments effectiveness is required to improve performance-based decisions for allocating resources to preserve and maintain pavements on any road network. Measurement of treatment effectiveness is a complex task that requires historical records of treatments with observations of before and after performance trends. Lack of data is often an obstacle that impedes development and incorporation of surface maintenance treatments into pavement management. This paper analyzes the effect of surface treatments on asphalt paved arterial roads for several control sections of New Brunswick. The method uses a Transition Probability Matrix to capture main effects by mapping mean trends of surface improvement and pavement structure decay. It was found that surface treatments have an immediate effect reducing the rate of loss of structural capacity. Pavements with international roughness index (IRI) smaller than 1.4 m/km did not seem to benefit from surface treatments. Those with IRI higher than 1.66 m/km gained from 6 to 8 years of additional life. Reset value for surface treatments fall between 1.18 and 1.29 m/km. This paper aims to serve to practitioners seeking to capture and incorporate effectiveness of surface treatments (i.e., crack-sealing) into Pavement Management.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the effect of surface treatments on the dynamic conductance curves (G=dI/dV‐V) of Au‐Bi2Sr2CaCu2O8+δ (single crystal) point contact junctions of variable junction conductances (100 mS≳G≳100 μS). We find that if the crystal surface is cleaved freshly just prior to making contacts, all irreproducible sharp multiple features often observed in tunneling data of Bi(2212) oxide superconductors disappear. If the cleaved crystal surfaces are left under ambient conditions for a few days and the tunneling experiments are repeated, these multiple features reappear. We also find that if the current in the junction is made to pass predominantly through the bulk (and not along the surface), gap features are sharper. The observed conductance curves are fitted to a modified model [G. E. Blonder et al., Phys. Rev. B 25, 4515 (1982)] and estimated gap values are Δ≂28 to 30 meV corresponding to the ratio 2Δ/kBTc ≂ 7.5 with lifetime broadening Γ/Δ≂0.2. We conclude that the sharp multiple features observed in Bi(2212) tunneling curves has no intrinsic origin in the bulk and they arise from the surface only.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fabrication of tissue engineering scaffolds necessitates amalgamation of a multitude of attributes including a desirable porosity to encourage vascular invasion, desired surface chemistry for controlled deposition of calcium phosphate-based mineral as well as ability to support attachment, proliferation, and differentiation of lineage specific progenitor cells. Scaffold fabrication often includes additional surface treatments to bring about desired changes in the surface chemistry. In this perspective, this review documents the important natural and synthetic scaffolds fabricated for bone tissue engineering applications in tandem with the surface treatment techniques to maneuver the biocompatibility of engineered scaffolds. This review begins with a discussion on the fundamental concepts related to biocompatibility as well as the characteristics of the biological micro-environment. The primary focus is to discuss the effects of surface micro/nano patterning on the modulation of bone cell response. Apart from reviewing a host of experimental studies reporting the functionality of osteoblast-like bone cells and stem cells on surface modified or textured bioceramic/biopolymer scaffolds, theoretical insights to predict cell behavior on a scaffold with different topographical features are also briefly analyzed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Poly-ε-caprolactone (PCL) is a biodegradable and biocompatible polymer used in tissue engineering for various clinical applications. Schwann cells (SCs) play an important role in nerve regeneration and repair. SCs attach and proliferate on PCL films but cellular responses are weak due to the hydrophobicity and neutrality of PCL. In this study, PCL films were hydrolysed and aminolysed to modify the surface with different functional groups and improve hydrophilicity. Hydrolysed films showed a significant increase in hydrophilicity while maintaining surface topography. A significant decrease in mechanical properties was also observed in the case of aminolysis. In vitro tests with Schwann cells (SCs) were performed to assess film biocompatibility. A short-time experiment showed improved cell attachment on modified films, in particular when amino groups were present on the material surface. Cell proliferation significantly increased when both treatments were performed, indicating that surface treatments are necessary for SC response. It was also demonstrated that cell morphology was influenced by physico-chemical surface properties. PCL can be used to make artificial conduits and chemical modification of the inner lumen improves biocompatibility.