976 resultados para SURFACE OCEAN RADIOCARBON


Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the end of the Last Glacial Maximum (19,000 to 11,000 years ago), atmospheric carbon dioxide concentrations rose while the Delta14C of atmospheric carbon dioxide declined**1, 2. These changes have been attributed to an injection of carbon dioxide with low radiocarbon activity from an oceanic abyssal reservoir that was isolated from the atmosphere for several thousand years before deglaciation**3. The current understanding points to the Southern Ocean as the main area of exchange between these reservoirs4. Intermediate water formed in the Southern Ocean surrounding Antarctica would have then carried the old carbon dioxide signature to the lower-latitude oceans**5, 6. Here we reconstruct the Delta14C signature of Antarctic Intermediate Water off the coast of Chile for the past 20,000 years, using paired 14C ages of benthic and planktonic foraminifera. In contrast to the above scenario, we find that the delta14C signature of the Antarctic Intermediate Water closely matches the modelled surface ocean Delta14C, precluding the influence of an old carbon source. We suggest that if the abyssal ocean is indeed the source of the radiocarbon-depleted carbon dioxide, an alternative path for the mixing and propagation of its carbon dioxide may be required to explain the observed changes in atmospheric carbon dioxide concentration and radiocarbon activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution planktonic foraminiferal census data from Santa Barbara Basin (Ocean Drilling Program hole 893A) demonstrate major assemblage switches between 25 and 60 ka that were associated with Dansgaard-Oeschger cycles. Stadials dominated by Neogloboquadrina pachyderma (sinistral), and Globigerinoides glutinata suggest a strong subpolar California Current influence, while interstadials marked by abundant N. pachyderma (dextral) and G. bulloides indicate a relative increase in subtropical countercurrent influence. Modern analog technique and transfer function (F-20RSC) temperature reconstructions support d18O evidence of large rapid (70 years or less) sea surface temperature shifts (3° to 5°C) between stadials and interstadials. Changes in the vertical temperature gradient and water column structure (thermocline depth) are recorded by planktonic faunal oscillations suggest bimodal stability in the organization of North Pacific surface ocean circulation. Santa Barbara Basin surface water demonstrates the rapid response of the California Current System to reorganization of North Pacific atmospheric circulation during rapid climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.