981 resultados para SUPPORTED LIQUID MEMBRANES
Resumo:
Este trabalho foi desenvolvido no âmbito de um projecto europeu intitulado: “Operational demonstration of innovative and sustainable nitrate elimination in stainless steel pickling by higher power biological denitrification technique” Projecto RESP-CT-2007-00047, tendo em vista o desenvolvimento de membranas para o tratamento de efluente resultante da decapagem do aço inox. Numa fase inicial foram desenvolvidas membranas compostas assimétricas pelo método de polimerização interfacial. Estas membranas foram produzidas utilizando uma membrana comercial de suporte em polietersulfona e os filmes selectivos de poliamiada foram formados por reacção entre 1,3,5-tri(clorocarboni)benzeno (TMC) e várias dinaminas: piperazina (PIP), N-(2-aminoetil)-piperazina (EAP), 1,4-bis(3-aminopropil)-piperazina (DAPP), 6-metil-1,3,5 triazina-2,4 diamina (MTC), Isoforodiamina (IPD) e Dietilenetriamina (DET). A elaboração de membranas de TFC (thin film composite) tinha como objectivo a retenção de sais do efluente resultante da decapagem do aço inox. No entanto, chegou-se a conclusão de que o principal problema do efluente não era a retenção dos sais, mas sim a retenção da matéria orgânica. Assim, já não era necessa´ria a produção de membranas compostas, mas apenas uma membrana suporte simples de microfiltração. Numa segunda fase procedeu-se a preparação da membrana suporte pelo método da inversão de fase, tendo-se testado vários tipos de polímeros: PVC (polyvinyl chloride), PEI (Polyetherimide) e um polímero termoplástico geral. A membrana seleccionada foi a de PEI, com base na sua permeabilidade à água destilada e ao efluente resultante das águas residuais da decapagem do aço inox. Todas as membranas elaboradas durante a realização deste trabalho foram testadas na célula de Berghof a uma pressão de 4bar e com agitação. O principal prâmetro estudado foi a permeabilidade da membrana.
Resumo:
In the field of energy, natural gas is an essential bridge to a clean, low carbon, renewable energy era. However, natural gas processing and transportation regulation require the removal of contaminant compounds such as carbon dioxide (CO2). Regarding clean air, the increasing atmospheric concentrations of greenhouse gases, specifically CO2, is of particular concern. Therefore, new costeffective, high performance technologies for carbon capture have been researched and the design of materials with the ability to efficiently separate CO2 from other gases is of vital importance.(...)
Resumo:
Due to the increasing need of low voltage actuators, independent from electrochemical processes, electroactive actuators based on poly(vinylidene fluoride) composites with 10, 25 and 40 % of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim] [NTf2], ionic liquid are prepared by solvent casting and melting. We show that the charge structure of [C2mim] [NTf2] induces the complete piezoelectric -phase crystallization of the PVDF within the composite and decreases its crystallinity fraction significantly. [C2mim] [NTf2] also works as a plasticizer of PVDF, reducing the elastic modulus down to 12 % of the initial value. Moreover, the composites show significant displacement and bending under applied voltages of 2, 5 and 10 Vpp. The displacement and bending of the composite membranes are also evaluated as a function of [C2mim] [NTf2] content and sample thickness. Increasing amounts of ionic liquid result in larger deformations independently of the applied voltage.
Resumo:
The effect of different anions within the ionic liquid in the characteristics of solid polymer electrolytes (SPEs) based on P(VDF-TrFE) has been investigated. 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc], 1-ethyl-3-methylimidazolium triflate, [C2mim][(CF3SO3)3], 1-ethyl-3-methylimidazolium lactate, [C2mim][Lactate], 1-ethyl-3-methylimidazolium thiocyanate, [C2mim][SNC] and 1-ethyl-3-methylimidazolium hydrogen sulphate [C2mim][HSO4] have been used in SPE prepared by thermally induced phase separation (TIPS). The polymer phase, thermal and electrochemical properties of the SPE have been determined. The thermal and electrical properties of the SPEs strongly depend on the selected IL, as determined by their different interactions with the polymer matrix. The room temperature ionic conductivity increases in the following way for the different anions: [SNC] > [CF3SO3)3] > [HSO4] > [Lactate] > [OAc], which is mainly dependent on the viscosity of the ionic liquid.
Resumo:
New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C2mim][CnSO3], [C2mim][CnSO4] and [C2mim][diCnPO4]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes (SPE) membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10−4 S cm−1 and a wide electrochemical window of ∼ 4.0 V.
Resumo:
Behovet av förnyelsebar energi ökar ständigt eftersom det finns en strävan att minska beroendet av fossila bränslen. Dessutom är tillgångar av fossila bränslen begränsade. Miljövänliga processer för bioraffinaderier erbjuder en stor möjlighet för produktion av energi, bränslen och kemikalier. Den finska och svenska skogsindustrin har en lång tradition i utnyttjandet av skogsbiomassor. Bioraffinaderier som integreras med pappers- och cellulosaindustrin kan frambringa både ekonomiska och ekologiska fördelar i framställning av traditionella och biobaserade produkter. I doktorsarbetet studerades omvandling av extraktivämnen till finkemikalier som kan användas t.ex. av läkemedelsindustrin. Extraktivämnen fås ur biomassa. I forskningsarbetet framställdes biobaserade finkemikalier med hjälp av katalysatorer som baserar sig på joniska vätskor. Biomassan består av cellulosa, hemicellulosa, lignin och extraktivämnen, vilka huvudsakligen är terpener, vaxer och fettsyror. Extraktivämen är vedens komponenter, som kan separeras ur vedmaterialet med hjälp av neutrala lösningsmedel. Joniska vätskekatalysatorer som var immobiliserade på fasta bärare utnyttjades för isomerisering av α,β-pinenoxider samt hydrogenering citral. Inverkan av joniska vätskor på katalysatorns aktivitet och reaktionernas produktfördelning undersöktes under varierande reaktionsbetingelser. Kinetiska modeller för pinenoxidens isomeriseringsreaktioner beskrev väl experimentellt upptäckta skillnader mellan olika katalysatorer. --------------------------------------------------- Uusiutuvan energian tarve on kasvussa, koska riippuvuutta fossiilisista polttoaineista pyritään vähentämään. Tämän lisäksi fossiilisten polttoaineiden varannot ovat rajalliset. Ympäristöystävälliset biojalostusprosessit ovat näin ollen suuri mahdollisuus energian, polttoaineiden ja kemikaalien tuotannossa. Suomen ja Ruotsin metsäteollisuudella on pitkät perinteet metsäbiomassojen hyödyntämisessä. Paperi- ja selluteollisuuden yhteyteen integroiduilla biojalostamoilla voidaan luoda taloudellisia ja ympäristöllisiä etuja sekä perinteisten että biopohjaisten tuotteiden valmistuksessa. Väitöstyössä on tutkittu biomassan uuteaineiden kemiallista muuntamista hienokemikaaleiksi, joita voidaan käyttää esimerkiksi lääkeaineteollisuudessa. Biopohjaisia hienokemikaaleja on valmistettu biomassan uuteaineista ionisiin nesteisiin perustuvilla katalyyteillä. Biomassa koostuu selluloosasta, hemiselluloosasta, ligniinistä sekä uuteaineista, jotka ovat pääosin terpeenejä, vahoja tai rasvahappoja. Uuteaineet ovat puun komponentteja, jotka voidaan erottaa puusta neutraalien liuottimien avulla. Kiinteän kantajan päälle immobilisoituja ionisia nestekatalyyttejä (Supported Ionic Liquid Catalyst) hyödynnettiin α,β-pineenioksidien isomerisointireaktioissa sekä sitraalin vedytysreaktioissa. Ionisten nesteiden vaikutusta katalyyttien aktiivisuuteen sekä reaktioiden tuotejakaumaan tutkittiin erilaisissa reaktio-olosuhteissa. Pineenioksidien isomerisointireaktioiden kineettiset mallit kuvasivat hyvin kokeellisesti todettuja katalyyttien eroavaisuuksia.
Resumo:
Vanadia/ceria catalysts (2–10 wt% of V2O5) were prepared by wet impregnation of ammonium metavanadate in oxalic acid solution. Structural characterization was done with energy dispersive X-ray analysis (EDX), powder X-ray diffraction (XRD), BET surface area measurements, FT-IR spectroscopy and nuclear magnetic spectral analysis (51V MASNMR). XRD and 51V MASNMR results show highly dispersed vanadia species at lower loadings and the formation of CeVO4 phase at higher V2O5 loading. The catalytic activity of catalysts was conducted in liquid phase oxidation of ethylbenzene with H2O2 as oxidant. The oxidation activity is increased with loading up to 8 wt% V2O5 and then decreased with further increase in V2O5 content to 10 wt%. Different vanadia species evidenced by various techniques were found to be selective towards ethylbenzene oxidation. The CeVO4 formation associated with increased concentration of vanadia on ceria results the production of acetophenone along with 2-hydroxyacetophenone.
Resumo:
Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work the sol-gel process was used to prepare SnO2 supported membranes with an average pore size of 2.5 nm. The effects of salt concentration (NaCl or CaCl2) and of the pH of the aqueous solutions used on the flux and selectivity through the SnO2 membrane were analyzed by permeation experiments and the results interpreted taking account of the zeta potential values determined from the electrophoretic mobility of the SnO2 powder aqueous dispersion. The results show that the ion flux (Na+, Ca2+ and Cl-) throughout the membrane is determined by the electrostatic repulsion among these species and the surface charge at the tin oxide-solution interface.
Resumo:
SnO2 supported membranes have been prepared by sol-casting on alumina tubular substrate, using aqueous colloidal suspensions prepared by sol-gel route. The viscoelastic behaviour during sol ageing was analyzed by dinamic rheologial measurements. The complex viscosity and the storage and loss moduli have been followed during the sol-gel transition and the results have been correlated with the linear aggregates growth and the scalar percolation models. The scanning electron microscopy has evidenced that the homogeneity and thickness of the membrane depend on the sol ageing time. Crack-free and homogeneous membranes have been obtained for coated layers of 0.5μm thickness. © 1997 Trans Tech Publications.
Resumo:
A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 mu M; dynamic range: 2-200 mu M, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: +/- 7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications.
Resumo:
Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, n(e), or a restrictive tortuosity factor, tau(r), in the formulation of Fick's first law for diffusion. Both n(e) and tau(r) have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes. Copyright 2012 Elsevier B.V. All rights reserved.
Resumo:
Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, ne, or a restrictive tortuosity factor, tr, in the formulation of Fick's first law for diffusion. Both ne and tr have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes.
Resumo:
In this work carbon supported Pd nanoparticles were prepared and used as electrocatalysts for formic acid electrooxidation fuel cells. The influence of some relevant parameters such as the nominal Pt loading, the Nafion/total solids ratio as well as the Pd loading towards formic acid electrooxidation was evaluated using gold supported catalytic layer electrodes which were prepared using a similar methodology to that employed in the preparation of conventional catalyst coated membranes (CCM). The results obtained show that, for constant Pd loading, the nominal Pd loading and the Nafion percentage on the catalytic layer do not play an important role on the resulting electrocatalytic properties. The main parameter affecting the electrocatalytic activity of the electrodes seems to be the Pd loading, although the resulting activity is not directly proportional to the increased Pd loading. Thus, whereas the Pd loading is multiplied by a factor of 10, the activity is only twice which evidences an important decrease in the Pd utilization. In fact, the results obtained suggest the active layer is the outer one being clearly independent of the catalytic layer thickness. Finally, catalyst coated membranes with Pd catalyst loadings of 0.1, 0.5 and 1.2 mg cm-2 were also tested in a breathing direct formic acid fuel cell.